Published Jun 26, 2015

Fuzhou Wang  


Although pain is the most awful feeling for personal perception, it possesses critical benefits for preventing our human being to be injured further. Pain itself forms an overbalanced microenvironment in which people undertakes individualized changes in its neurobiological, psychological, endocrinological and genetic properties especially in the context of chronic pain or when the acute pain transmitted to chronicity. Our previous part (Part I) review the general epigenetic modification of nociceptive contributing factors in the context of chronic pain. Herein (Part II) we paid specific attention on the epigenetic regulation of pain-associated molecules including neurotransmitters and other factors. A detailed understanding of the specific modulating factors that influence individual epigenetic differences contributing to pain sensitivity and responsiveness to analgesics possesses essential implications in clinical pain management.



Pain, Gene Expression, Epigenetics, Analgesia, Neural Inhibition

Supporting Agencies

This work is supported by the National Natural Scientific Foundation of China (81271242, 81371248).

BASE Foundation from Bonoi Academy of Science and Education (BASE2013002B).

Nanjing Outstanding Young Scientists Grant (JQX12009).

1. Johnson Q, Borsheski RR, Reeves-Viets JL. Pain management mini-series. Part I. A review of management of acute pain. Mo Med 2013; 110: 74-79.

2. Gilron I, Baron R, Jensen T. Neuropathic Pain: Principles of Diagnosis and Treatment. Mayo Clin Proc 2015; 90: 532-545.

3. Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest 2010; 120: 3760-3772.

4. Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 2001; 8: 1-10.

5. Nishihara M. Psychiatric issues in chronic pain. Brain Nerve 2012; 64: 1323-1329.

6. Denk F, McMahon SB. Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 2012; 73: 435-444.

7. Puretic MB, Demarin V. Neuroplasticity mechanisms in the pathophysiology of chronic pain. Acta Clin Croat 2012; 51: 425-429.

8. Fornasari D. Pain mechanisms in patients with chronic pain. Clin Drug Investig 2012; 32 Suppl 1: 45-52.

9. DeLeo JA. Basic science of pain. J Bone Joint Surg Am 2006; 88 Suppl 2: 58-62.

10. Schaible HG. Pathophysiology of pain. Orthopade 2007;36: 8, 10-12, 14-16.

11. Kiguchi N, Kobayashi Y, Kishioka S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol 2012; 12: 55-61.

12. Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2012; 92: 1699-1775.

13. Kress M, Zeilhofer HU. Capsaicin, protons and heat: new excitement about nociceptors. Trends Pharmacol Sci 1999; 20: 112-118.

14. Vojinovic J, Damjanov N, D'Urzo C, Furlan A, Susic G, Pasic S, Iagaru N, Stefan M, Dinarello CA. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 2011; 63: 1452-1458.

15. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P, Donà G, Fossati G, Sozzani S, Azam T, Bufler P, Fantuzzi G, Goncharov I, Kim SH, Pomerantz BJ, Reznikov LL, Siegmund B, Dinarello CA, Mascagni P. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA 2002; 99: 2995-3000.

16. Rahman I, Gilmour PS, Jimenez LA, MacNee W. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem 2002; 234-235: 239-248.

17. Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, Ren B, Natarajan R. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem. 2008; 283: 26771-26781.

18. Belkouch M, Dansereau MA, Réaux-Le Goazigo A, Van Steenwinckel J, Beaudet N, Chraibi A, Melik-Parsadaniantz S, Sarret P. The chemokine CCL2 increases Nav1.8 sodium channel activity in primary sensory neurons through a G beta gamma-dependent mechanism. J Neurosci 2011; 31: 18381-18390.

19. Trollope AF, Gutièrrez-Mecinas M, Mifsud KR, Collins A, Saunderson EA, Reul JM. Stress, epigenetic control of gene expression and memory formation. Exp Neurol 2012; 233: 3-11.

20. Trocello JM, Rostene W, Melik-Parsadaniantz S, Godefroy D, Roze E, Kitabgi P, Kuziel WA, Chalon S, Caboche J, Apartis E. Implication of CCR2 chemokine receptor in cocaine-induced sensitization. J Mol Neurosci 2011; 44: 147-151.

21. Cebola I, Peinado MA. Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 2012; 51: 301-313.

22. To SQ, Takagi K, Miki Y, Suzuki K, Abe E, Yang Y, Sasano H, Simpson ER, Knower KC, Clyne CD. Epigenetic mechanisms regulate the prostaglandin E receptor 2 in breast cancer. J Steroid Biochem Mol Biol 2012; 132: 331-338.

23. Trang T, Beggs S, Salter MW. Brain-derived neurotrophic factor from microglia: A molecular substrate for neuropathic pain. Neuron Glia Biol 2011; 7: 99-108.

24. Zocchi L, Sassone-Corsi P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012; 7: 695-700.

25. Takase K, Oda S, Kuroda M, Funato H. Monoaminergic and neuropeptidergic neurons have distinct expression profiles of histone deacetylases. PLoS One 2013; 8: e58473.

26. Illi B, Colussi C, Grasselli A, Farsetti A, Capogrossi MC, Gaetano C. NO sparks off chromatin: tales of a multifaceted epigenetic regulator. Pharmacol Ther 2009; 123: 344-352.

27. Breton CV, Byun HM, Wang X, Salam MT, Siegmund K, Gilliland FD. DNA methylation in the arginase-nitric oxide synthase pathway is associated with exhaled nitric oxide in children with asthma. Am J Respir Crit Care Med 2011; 184: 191-197.

28. van Wilgen CP, Keizer D. The sensitization model to explain how chronic pain exists without tissue damage. Pain Manag Nurs 2012; 13: 60-65.

29. Hashizume K. Diagnosis and treatment of chronic pain by pain clinicians. Brain Nerve 2012; 64: 1315-1322.

30. Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RW 4th, Nicoletti F. Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci 2010; 31: 153-160.

31. Chiechio S, Zammataro M, Morales ME, Busceti CL, Drago F, Gereau RW 4th, Copani A, Nicoletti F. Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol 2009; 75: 1014-1020.

32. Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ. Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med 2011; 17: 1448-1455.

33. Tajerian M, Alvarado S, Millecamps M, Vachon P, Crosby C, Bushnell MC, Szyf M, Stone LS. Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex. PLoS One 2013; 8: e55259.

34. Imai S, Ikegami D, Yamashita A, Shimizu T, Narita M, Niikura K, Furuya M, Kobayashi Y, Miyashita K, Okutsu D, Kato A, Nakamura A, Araki A, Omi K, Nakamura M, James Okano H, Okano H, Ando T, Takeshima H, Ushijima T, Kuzumaki N, Suzuki T, Narita M. Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain. Brain 2013; 136: 828-843.

35. Qi F, Zhou Y, Xiao Y, Tao J, Gu J, Jiang X, Xu GY. Promoter demethylation of cystathionine-beta-synthetase gene contributes to inflammatory pain in rats. Pain 2013; 154: 34-45.

36. Wang Y, Liu C, Guo QL, Yan JQ, Zhu XY, Huang CS, Zou WY. Intrathecal 5-azacytidine inhibits global DNA methylation and methyl- CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury. Brain Res 2011; 1418: 64-69.

37. Kiguchi N, Kobayashi Y, Maeda T, Fukazawa Y, Tohya K, Kimura M, Kishioka S. Epigenetic augmentation of the macrophage inflammatory protein 2/C-X-C chemokine receptor type 2 axis through histone H3 acetylation in injured peripheral nerves elicits neuropathic pain. J Pharmacol Exp Ther 2012; 340: 577-587.

38. Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L. A comprehensive review of opioid-induced hyperalgesia. Pain Physician 2011; 14: 145-161.

39. Doehring A, Oertel BG, Sittl R, Lötsch J. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. Pain 2013; 154: 15-23.

40. Tsai RY, Shen CH, Feng YP, Chien CC, Lee SO, Tsai WY, Lin YS, Wong CS. Ultra-low-dose naloxone enhances the antinociceptive effect of morphine in PTX-treated rats: regulation on global histone methylation. Acta Anaesthesiol Taiwan 2012; 50: 106-111.

41. Bie B, Wang Y, Cai YQ, Zhang Z, Hou YY, Pan ZZ. Upregulation of nerve growth factor in central amygdala increases sensitivity to opioid reward. Neuropsychopharmacology 2012; 37: 2780-2788.

42. Uchida H, Sasaki K, Ma L, Ueda H. Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury. Neuroscience 2010; 166: 1-4.

43. Cao XH, Chen SR, Li L, Pan HL. Nerve injury increases brain-derived neurotrophic factor levels to suppress BK channel activity in primary sensory neurons. J Neurochem 2012; 121: 944-953.

44. Zhu XY, Huang CS, Li Q, Chang RM, Song ZB, Zou WY, Guo QL. p300 exerts an epigenetic role in chronic neuropathic pain through its acetyltransferase activity in rats following chronic constriction injury (CCI). Mol Pain 2012; 8: 84.

45. Huang Z, Peng S, Knoff J, Lee S, Yang B, Wu TC, Hung CF. Combination of proteasome and HDAC inhibitor enhances HPV16 E7-specific CD8+ T cell immune response and antitumor effects in a preclinical cervical cancer model. J Biomed Sci 2015; 22: 7.

46. Kim EJ, Kim YH, Rook AH, Lerner A, Duvic M, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Waksman J, Whittaker S. Clinically significant responses achieved with romidepsin across disease compartments in patients with cutaneous T-cell lymphoma. Leuk Lymphoma 2015; 2015: 1-22.
How to Cite
Wang, F. (2015). Epigenetic Modification of Nociceptive Mediators: Implications for the Etiology of Neural Hypersensitivity (Part II). Science Insights, 12(3), 429-434. https://doi.org/10.15354/si.15.re029