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The toxicological and pharmacological effects of parasite-derived components on the host 

have received extensive attention. A deep understanding of the toxicological and pharmaco-

logical effects of parasite-derived molecules on the host from the perspective of co-adaptation 

formed during the long-term parasite-host evolution process will not only deepen the under-

standing of the pathogenic mechanisms of parasites from the perspective of pathogenesis but 

also benefit from the perspective of treatment. From the perspective of disease, research and 

development based on the transformation and application of insect-derived components have 

become and will continue to be one of the most popular research tasks in the field of parasit-

ology research. This article reviews the toxicological and pharmacological effects of several 

essential zoonotic parasites and their parasites in recent years in inducing and regulating host 

immune metabolism-related diseases and makes suggestions for the future direction of para-

sitology research. 
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HE relationship between parasitic protozoa and worms 

and their hosts (including humans) is formed through 

interactions during the co-evolution of both (1). With the 

development of new theories, new concepts, and new techniques 

in biological sciences, it is possible for researchers to deepen 

their understanding of host-parasite interactions at a higher and 

deeper level of cell and molecular biology. From an evolutionary 

point of view, host groups always increase genetically deter-

mined resistance to counteract the harmful effects of parasites, 

and parasites always increase genetically determined invasive-

ness, and a series of mechanisms to evade or antagonize host 

attacks have evolved (2). This interaction determines the clinical 

outcome of parasitic infection, of which the host-parasite im-

munological relationship or interaction may be the most critical. 

Studies have focused on the in-depth excavation of the 

host-parasite immunological relationship or interaction, reveal-

ing the biological phenomenon that the host’s immune response 

to parasites is a “double-edged sword”, and clarifying the origin 
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of immunopathological damage. Toxicological effects have be-

come the key pathological basis of many parasitic diseases, 

providing intervention targets for the prevention and treatment 

of them (3). At the same time, researchers have also revealed 

that certain parasites, especially worms, can not only reduce the 

level of parasite-specific immunity but also regulate the host’s 

autoimmunity and allergic inflammatory responses through ex-

cretion and secretion components, which can improve the host’s 

immune and metabolic stability and the pharmacological effects 

of the state. 

Research in parasitology focuses on three main areas: the 

molecular biology of the host-parasite relationship, the discov-

ery of antiparasitic drugs and vaccines, and the discovery of uses 

for the treatment of human diseases. Clearly, the study of para-

site-derived immunomodulatory components, which can help 

translate current and future research results into potential treat-

ments, even though it is a challenge. Discussion of the immune 

response and modulation of parasites, particularly helminths, in 

the context of novel therapeutic drug discovery affirms the 

pharmacological effects of insect-derived components on the 

host. Parasite-derived molecules may have more potential than 

the traditional route to new drug development (4). The pharma-

cological effects of parasite-derived components on the host are 

formed through evolutionary selection pressure during the 

co-evolution of the parasite and the host (5). We herein review 

the toxicological and pharmacological effects and mechanisms 

of several important parasite-derived components and puts for-

ward opinions and suggestions for the future direction of this 

field. 

 
Toxicology and Pharmacological Effects of 
Protozoa 
Protozoa are single-celled eukaryotes with a simple structure 

that can parasitize human tissues, organs, cells, and body fluids. 

They can participate in the host’s immune response and immune 

regulation process through the secretion of various effector 

molecules. 

 
Toxoplasma gondii 
Toxoplasma gondii is a critical opportunistic pathogenic proto-

zoan. The growth and reproduction cycle of Toxoplasma gondii, 

its ability to invade host cells, virulence, and immune escape 

process are all related to soluble tachyzoite antigens (STAg) 

and/or Toxoplasma gondii tachyzoite excretion/secretion antigen 

(ESA). In the early stage of Toxoplasma gondii infection of host 

cells, microneme protein (MIC) and rhoptry protein (ROP) play 

an important role in the process of tachyzoite recognition, at-

tachment, and invasion of host cells, and then the formation of 

parasitic vacuoles; and dense granule protein (GRA) plays a key 

role in the process of obtaining nutrients from the host to main-

tain survival and reproduction (6). Etheridge et al. developed a 

tandem affinity protein labeling and purification method and 

clarified that the pathogenic mechanism of Toxoplasma gondii is 

mainly through the combination of ROP18, ROP5, and ROP17 

to become a key acute virulence factor, which can directly target 

phosphorylation (7). Immune-associated GTPases, in turn, pro-

tect the parasite from clearance by activated macrophages (8). 

The exploration of the application value of Toxoplasma 

gondii-derived molecular transformation has always been the 

focus in this field. Mercer et al. used the cps1-1 Toxoplasma 

gondii strain to knock out GRA24 and found that GRA24 can 

induce p38 MAPK activation and downstream IL-12 production 

in host macrophages to protect immunity (9). It was further 

found that its inducibility was independent of Toll-like recep-

tor/myeloid differentiation factor 88 (TLR/MyD88) signal acti-

vation. In addition, GRA7 relies on its C-terminus (GRA7-V) to 

interact with and ubiquitinate the RING domain of the TRAF6 

molecule downstream of TLR4, thereby inducing the activation 

of nuclear factor B signaling and the release of inflammatory 

cytokines (10). Immunization with GRA7-V mice can induce 

Th1 immune responses and exert protective effects against Tox-

oplasma gondii infection. Pulmonary toxoplasmosis is more 

common in organ transplantation and HIV-infected patients, 

with severe clinical manifestations (11). Exploring the function 

and mode of action of ROP16 on host immune cells is of great 

significance for exploring drug targets and vaccine candidates 

for the treatment of toxoplasmosis. The researchers screened 

chemokine CXC motif ligand 11, TLR3, chemokine CC motif 

ligand 26, human leukocyte antigen E, signal transduction tran-

scription activator 2 used the cps1-1 Toxoplasma gondii strain to 

knock out GRA24 and found that GRA24 can induce p38 

MAPK activation and downstream IL-12 production in host 

macrophages to protect immunity (12). It was further found that 

its inducibility was independent of Toll-like receptor/myeloid 

differentiation factor 88 (TLR/MyD88) signal activation (13). In 

addition, GRA7 relies on its C-terminus (GRA7-V) to interact 

with and ubiquitinate the RING domain of the TRAF6 molecule 

downstream of TLR4, thereby inducing the activation of nuclear 

factor B signaling and the release of inflammatory cytokines 

(14). Immunization with GRA7-V mice can induce Th1 immune 

responses and exert protective effects against Toxoplasma gondii 

infection (15). Şahar et al. expressed 49 recombinant proteins of 

Toxoplasma gondii and screened out hexavalent candidate vac-

cine molecules (pH2, pA4, pE4, pD6, pE6, pH6) and found that 

they had good efficacy against acute lethal toxoplasmosis (16). 

Wang et al. used Saccharomyces cerevisiae to express TgMIC16 

protein (pCTCON2-TgMIC16/EBY100) and found that it could 

induce higher levels of humoral and cellular survival of Toxo-

plasma gondii (17). Recombinant T. gondii heat shock protein 

70 (TgHSP70) can enhance the induction of nitric oxide expres-

sion and prevent the formation of cysts in the brain of Toxo-

plasma gondii, accompanied by higher IgG1 antibody levels 

(18). In view of the important characteristics of the 

pro-inflammatory response induced by the host infection with 

Toxoplasma gondii, Toxoplasma STAg was injected into preg-

nant mice to induce maternal immune activation (typical 

Th1/Th17 immune bias) and found significant autism-like be-

haviors such as social impairment, repetitive stereotyped behav-

ior, etc (19). However, the following issues remain to be re-

solved: (i) the difference between the Toxoplasma gondii antigen 

STAg and traditional pathogenic molecules (lipopolysaccharide, 

and polyinosinic acid) in the model of inducing autism-like be-

havior in offspring; (ii) the existence of a molecule capable of 

exerting the above-mentioned toxicological effects. 

Chronic infection with Toxoplasma protects mice from 

other pathogens, including Listeria monocytogenes, Salmonella 
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typhimurium, Cryptococcus neoformans, Moloney leukemia 

virus, and Schistosoma monsoni (20, 21). O’Brien et al. used the 

Toxoplasma gondii antigen STAg to act on the highly pathogenic 

H5N1 avian influenza virus, which can significantly reduce the 

virus titer and prolong the survival of mice, indicating that 

treatment with STAg can induce the avian influenza virus’s po-

tential immunity (22). In addition, Settles et al. showed that 

chronic Toxoplasma infection or the use of the soluble Toxo-

plasma antigen STAg can reduce experimental cerebral malaria 

induced by the Plasmodium berghei anka strain by inducing 

IFN-γ (23). Charest et al. used the temperature-sensitive strain 

of Toxoplasma gondii ts-4 as a vector to express the 

circumsporozoite protein of Plasmodium yoelii and constructed 

a recombinant circumsporozoite protein carboxy-terminal 3 and 

found that it could produce a high level of anti-plasmodium 

specificity IFN-γ, suggesting that the recombination of Toxo-

plasma gondii ts-4 with other pathogen proteins can make the 

host obtain protection against other pathogens (24). 

In addition, Kim and colleagues found that rGRA8 can 

induce colonic cell death through the signaling pathway of pro-

tein kinase C subunit-Sirtuin 3-ATP synthetase F1 subunit and 

creatively developed a specific targeting tumor cell membrane 

molecule (acidity-triggered rational membrane, ATRAM) con-

jugated GRA8 multifunctional peptide molecule 

(rATRAM-GRA8-M/AS) that was found to have significant 

anti-tumor activity (25). At the same time, the dense granule 

protein GRA15II of the virulence-related molecule of Toxo-

plasma gondii has the ability to induce the M1 polarization of 

classically activated macrophages (26). 

 
Leishmania 
Leishmania braziliensis metalloprotease glycoprotein-63 (GP63) 

is expressed in both promastigotes and amastigotes, located on 

the surface of the worm body, and has the function of attaching 

macrophages to promastigotes (27). These two enzymes are 

closely related and are an important virulence factor (28). Stud-

ies have suggested that the mechanism of GP63-mediated at-

tachment of Leishmania promastigotes is closely related to the 

direct binding of macrophage receptor CR3, and anti-CR3 anti-

bodies can inhibit the binding of GP63 to macrophages (29). At 

the same time, GP63 is crucial in the process of amastigotes 

resisting macrophage lysosome hydrolysis (30). In macrophages, 

GP63 has been shown to cleave a variety of substrates, such as 

protein tyrosine phosphatases, transcription factors, and the 

target of rapamycin, thereby benefiting intracellular parasite 

survival (31). Using the GP63-derived polypeptides 

LLVAALLAVLLV and AARLVRLAAAGAAVTAAR can in-

duce high levels of anti-Leishmania IgG antibodies in hamsters 

and stimulate the proliferation of lymphocytes, suggesting that 

GP63-derived polypeptides also have potential candidate vac-

cine effects (32). Exosomes are eukaryotic extracellular vesicles 

that maintain cellular communication in various biological set-

tings. Studies have raised the important point that Leishmania 

exosomes are involved in the pathogenic processes of the dis-

ease (33). The exosomes of Leishmania mexicana contain a 

series of insect-derived molecules, such as virulence factor 

GP63 and protein phosphatase 2C (34). Exosomes can inhibit 

the secretion of infected bone marrow-derived macrophages (35). 

Nitric oxide levels can also suppress cellular immune responses 

by reducing major histocompatibility complex class I and CD86 

molecules on the surface of macrophages, thereby increasing the 

survival rate of parasites in cells (36). 

Many reports presented Leishmania-derived molecules as 

potential diagnostic and vaccine effector molecules, such as the 

r21 protein derived from Leishmania infantum (37), the hypo-

thetical protein G (38), hypothetical protein J (39), which have 

high sensitivity and specificity for diagnosing canine and human 

leishmaniasis with low cross-reactivity. In addition, researchers 

used Leishmania infantis lipophosphoglycan 3 (LPG3) antigen 

to immunize infected BALB/c mice and found that it had better 

protection and could induce an increase in serum IgG2a anti-

body levels in mice (40). Leishmania infantum pyridoxal kinase 

recombinant protein can induce the expression of high levels of 

cytokines interferon-γ (IFN-γ), interleukin-12 (IL-12) after im-

munization of mice, granulocyte-macrophage colo-

ny-stimulating factor, and specific IgG2a antibodies, suggesting 

that recombinant pyridoxal kinase protein can be used as a po-

tential vaccine molecule for visceral leishmaniasis (41). The 

co-infection of Leishmania and HIV can be characterized as a 

complex system involving alterations in the expression of cell 

surface molecules, secretion of soluble factors, and intracellular 

apoptotic processes. These changes ultimately result in the en-

hancement of infectivity, replication, and dissemination of both 

pathogens (42). 

Using the non-pathogenic Leishmania tarentolae as a 

model for a novel drug candidate to produce a live vaccine 

against an intracellular pathogen, they recombinantly expressed 

human papillomavirus in Leishmania tarentolae E7 protein (L. 

tarentolae-E7) and injected it into a mouse model of cervical 

cancer (43). They found that E7 molecules can protect mice 

from human papillomavirus-associated tumors (44, 45). In addi-

tion, Caner et al. found that Leishmania infantum and 

Leishmania tropica could significantly inhibit tumor formation 

in 4T1 breast cancer mice and induce high levels of IFN-γ and 

tumor necrosis factor-α (TNF-α) (46). 

 
Plasmodium 
Malaria is a very harmful zoonotic parasitic disease. According 

to the World Health Organization, approximately 50% of the 

global populace was susceptible to contracting malaria, there 

were an estimated 247 million cases of malaria worldwide and 

619,000 malaria-related deaths worldwide in 2021 (47). Studies 

have shown that Plasmodium falciparum erythrocyte membrane 

protein 1 (PfEMP1) is expressed in the asexual stage and is 

closely related to the pathogenicity of severe malaria (48, 49). 

Plasmodium in red blood cells adheres to the endothelium of 

blood vessels in the brain through PfEMP1, triggering the oc-

currence of cerebral malaria, and this process binds to the host 

receptor endothelin C receptor, thereby interfering with coagula-

tion, inflammation, cell death, and vascular permeability (50). 

Toda et al. found that plasma-derived extracellular vesicles from 

patients with Plasmodium vivax could be recognized by human 

splenic fibroblasts, and then induced reticulocytes infected with 

Plasmodium vivax (P. vivax) and human splenic fibroblasts to 

stick (51). In addition, Jiang et al. found that silencing SET 

gene-dependent histone H3K36 methylation in Plasmodium 
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falciparum can inhibit the expression of pathogenicity-related 

genes; silencing SET gene knockout Plasmodium can express all 

PfEMP1 proteins, providing a new idea for malaria vaccine 

development (52). 

VMP001 is a low-level protective vaccine designed based 

on the circumsporozoite protein of Plasmodium vivax. On this 

basis, Atcheson et al. further discovered that the alleles VK210 

and the small peptides of VK247 are highly protective (53). In 

addition, it has been pointed out in the literature that the Plas-

modium falciparum merozoite protein complex (PfRH5- 

PfCyRPA-PfRipr, RCR) can be used as a target for Plasmodium 

falciparum vaccines (54). At the same time, PfHSP90, derived 

from Plasmodium falciparum, promotes the development of 

parasites in red blood cells by forming a complex with 

PfHSP70-1 (55, 56). A variety of antimalarial drugs have been 

developed against PfHSP90 in clinical trials (57, 58). Some 

believe that Plasmodium infection can initiate the body’s an-

ti-tumor innate and adaptive immune responses by activating the 

immune system, and then inhibit tumor growth and metastasis 

(59, 60). Due to concerns about the clinical safety of infec-

tion-induced immunotherapy, the protein encoded by variable 

region 2 of the Plasmodium protein that binds to chondroitin 

sulfate A has been investigated and found that it can directly 

target and recognize a variety of tumor cells by binding to 

glycosaminoglycans and play a potential important role in inhib-

iting tumor cell proliferation (61, 62). 

 
Toxicology and Pharmacological Effects of 
Worms 
Parasitic worms and their ES mainly affect the host’s immunity 

by acting on the host’s immune system and activating or regu-

lating immune cells. The above-mentioned ES an-

ti-inflammatory components include proteins, extracellular vesi-

cles, glycans, and various metabolites, which has opened up new 

fields and directions for the study of the biological characteris-

tics of worms.  

 
Hookworm 
Hookworm infection can lead to damage to human intestinal 

wall and long-term chronic blood loss (63). In severe cases, it 

can lead to developmental delays and other symptoms (64). 

After hookworm infection, the main advantage is to induce host 

immune responses such as ILC2, Th2, M2, and eosinophils (65). 

Its pharmacological effects on allergic and autoimmune diseases 

through hookworm infection or hookworm-derived molecules 

have been studied, and found that (i) the asymptomatic charac-

teristics of hookworm mild infection and the immunological 

effects; (ii) the ES components of hookworm help the intestinal 

hookworm and the host co-evolve from the immune system 

attack, and then allow the hookworm to survive. 

Some researchers used Nippostrongylus brasiliensis to 

prevent and treat type 2 diabetic mice and found that the fasting 

blood glucose, oral glucose tolerance, and body weight of dia-

betic mice were significantly reduced, and it was clear that the 

reduction of systemic and local inflammation was related to 

intestinal compositional changes in the microbiota (66). Further 

studies found that the extracellular vesicles secreted by E. 

brasiliensis up-regulate high levels of the anti-inflammatory 

cytokine IL by inhibiting the key cytokines (IL-6, IL-1, IFN-, 

and IL-17a) involved in the pathology of colitis in order to pre-

vent induced colitis in mice (67). The netrin domain-containing 

protein 1 secreted by Necator americanus can prevent acute 

2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice, 

mainly by inducing suppression of type I immunity in the gut 

(68). In response to signaling factors (e.g., TNF, IL-6, and IL-1), 

M1 polarization is downregulated (69). Wangchuk et al. found 

that the anti-inflammatory protein AIP2, derived from 

Ancylostoma caninum, can inhibit the airway inflammation of 

ovalbumin (OVA)-induced asthmatic mice and reduce human 

dendritic cells (DCs), and revealed that AIP-2 is mainly captured 

by mesenteric CD103+ DC cells and then induces the important 

molecular mechanism of regulatory T cells (Treg) cells (70). 

Low-molecular-weight metabolites of somatic extracts 

(LMWM-SE) of H. caninum and the low-molecular-weight 

metabolites of excreted secretion products (LMWM-ESP) can 

significantly inhibit colitis and protect the colon tissue structure 

from damage (70). Gas chromatography-mass spectrometry 

(GC-MS) and liquid chromatography (LC-MS) analysis showed 

that there were 46 polar metabolites, 22 fatty acids, and 5 

short-chain fatty acids (SCFA) in LMWM-SE; LMWM-ESP 

presents 29 polar metabolites, 13 fatty acids, and 6 SCFAs (71). 

The small metabolites mentioned above, especially SCFAs, have 

strong anti-inflammatory properties. Williamson et al. identified 

Ancylostoma canisinum and Necylos americana peptide 1 from 

the ES of Ancylostoma canisinum and Necylos americana, 

which can significantly reduce the body weight of 

2,4,6-trinitrobenzenesulfonic acid-induced colitis model (72). 

Mass reduction and colonic atrophy, edema, ulceration, and 

necrosis, showing good anti-colitis properties; at the same time, 

these hookworm peptides can induce the up-regulation of ulcer 

epithelial repair-related genes (nlrp3, mmp, and smad) and in-

hibit the mucous membrane of goblet cells (73).  

 
Schistosoma 
Schistosomiasis remains a serious but neglected tropical disease 

worldwide. There are five species of schistosomiasis that parasi-

tize the human body. The main cause of disease of 

Schistosomiasis japonicum is the deposition of eggs in the liver 

and intestines, leading to tissue granulomatous lesions and sec-

ondary fibrosis (74). Studies have found that components de-

rived from schistosomiasis have potential toxicological and 

pharmacological effects on various diseases. First of all, mole-

cules derived from Schistosoma japonicum eggs can be involved 

in promoting the formation of liver granulomas, such as the 

worm-derived protein SjE16.7 can recruit neutrophils and in-

duce the formation of liver inflammatory granulomas (75, 76). 

Blocking SjE16.7 in vivo could significantly alleviate 

egg-induced liver immunopathological damage (77, 78). Takaki 

et al. used zebrafish larvae as a model to study egg-induced 

macrophage recruitment and granuloma formation and found 

that the Schistosoma japonicum-derived protein omega-1 could 

mediate the initial stage of macrophage recruitment, which 

Chemotactic activity depends on its RNase activity (79). When 

lentivirus was used to interfere with omega-1 in eggs, the tail 

vein injection of eggs into mice could significantly inhibit the 

immunopathological changes of egg granulomas in the lungs 

RETRACTED



https://bonoi.org/index.php/si SI | June 30, 2023 | vol. 42 | no. 6 955 

(80). Macrophages stimulated by different stages of Schistosoma 

japonicum infection or different insect-derived molecular com-

ponents (soluble adult worm antigen, soluble egg antigen), 

showed that the macrophages were polarized to M1 and M2 

respectively, suggesting that the insect-derived molecules were 

involved in schistosomiasis the acute and chronic inflamma-

tion-mediated injury process of infection (81, 82). In addition, 

macrophages activated by soluble egg antigen induced CD4+ T 

cells to differentiate into follicular helper T cells in a manner 

dependent on inducible costimulatory molecules and their lig-

ands, and further revealed that follicular helper T cells 

Chemotaxis of eosinophils by inducing levels of the chemokine 

CXC motif ligand 12 in turn promotes hepatic pathology in-

duced by schistosome infection (83, 84). 

Second, schistosome-derived components also have po-

tential transformational application value in the progression of 

various diseases. Studies have shown that the recombinant pro-

tein Sj16 derived from Schistosoma japonicum can inhibit the 

polarization of M2 macrophages and slow down the level of 

hepatic granulomatous inflammation and fibrosis induced by 

Schistosoma japonicum infection (85, 86). The transcriptional 

transactivator triosephosphate isomerase (Tat-TPI) derived from 

Schistosoma japonicum could induce lymph nodes and spleen to 

produce stronger CD4+ and CD8+ T cell responses and resulted 

in a significant reduction in the area of egg granulomas in the 

liver (87). Schistosoma mansoni and Schistosoma japonicum 

infections of collagen-induced arthritis (CIA) mice can signifi-

cantly alleviate the severity of arthritis in mice (88, 89). After 

intradermal injection of Schistosoma mansoni cercariae protein 

into CIA mice, it can significantly reduce the arthritis score and 

induce an increase in the level of Treg cells in mice (90). CIA 

mice were treated with recombinant Schistosoma 

japonicum-derived cysteine protease inhibitor (rSjCystatin) and 

found that rSjCystatin can significantly reduce the clinical score, 

incidence rate, and joint histopathological score of CIA mice; at 

the same time, rSjCystatin can also inhibit increased levels of 

IL-4, IL-10, and collagen-specific IgG1 in diseased mice (91). 

HSP is an important stress protein that is widely present in 

hosts and parasites. One of the more abundant proteins in the 

egg protein of Schistosoma japonicum is HSP40 (Sjp40), which 

can inhibit the activation of hepatic stellate cells through the 

STAT3/p53/p21 pathway and has the potential to inhibit liver 

fibrosis (92, 93). At the same time, Sjp40 can be secreted into 

the blood in the early stages of infection, which has potential 

diagnostic value. In addition, peptides p6 (51–70), p25 

(241–260), and p30 (291–310) derived from Sjp40 were able to 

suppress airway inflammation in OVA-induced allergic asthma 

mice by inducing IFN-γ production, indicating that 

helminth-derived peptides can provide a novel 

immunoprotective utility (94). Schistosoma japonicum egg an-

tigen Sjp40 targets hepatic cell pattern recognition receptor 

CD36, activating downstream AMP-dependent protein kinase 

signaling, and then inhibiting liver lipid formation, indicating 

that Sjp40 has potential translational value in modulating hepat-

ic lipid metabolism (95). 

M1 macrophages mainly promote the inflammatory re-

sponse and can inhibit the repair of peripheral nerves, while M2 

macrophages can promote the repair of injured peripheral nerves 

(96). Studies have confirmed that Schistosoma japonicum mouse 

human epitope 1 (SJMHE1) can promote peripheral myelin 

growth and functional regeneration by inducing M2 macro-

phage-dependent mechanisms, indicating that SJMHE1 has the 

ability to improve peripheral therapeutic potential in 

neurorestoration (97). SJMHE1 treatment of OVA-induced ex-

perimental asthmatic mice can inhibit airway inflammation in 

allergic mice, reduce infiltrating inflammatory cells in the lungs 

and bronchoalveolar lavage fluid, reduce the percentage of Th2 

cells, and increase the expression of the Th1 and Treg ratios (98, 

99). Moreover, SJMHE1 can also inhibit dextran sodium sul-

fate-induced acute and chronic colitis in mice, upregulate the 

proportion of Treg cells in mesenteric lymph nodes, and pro-

mote the production of IL-10 (100). 

 
Tapeworm 
Taenia species are diverse and widely distributed, with different 

biological characteristics and serious harm to humans and ani-

mals (101). Cui et al. collected ESP and cysticercoid cystic fluid 

from Taenia solium and analyzed them by LC-MS, finding that 

there were 206 and 247 different proteins in the cystic fluid and 

ESP, respectively, and that these proteins had obvious 

pro-inflammatory and anti-inflammatory properties (102). 

Ranasinghe et al. found that Echinococcus granulosus Kunitz 

type protease inhibitor family 1 (EgKI-1) exhibited 

dose-dependent inhibition of various human cancer cells in vitro 

(including growth and migration of breast, melanoma, and cer-

vical cancer cell lines) without affecting normal cell growth 

suggesting that EgKI-1 prevents cancer cell growth by disrupt-

ing the cell cycle and inducing apoptosis in cancer cells (103). 

In addition, EgKI-1 significantly inhibited the growth of mela-

noma in B16-F0 mice, which may be achieved by reducing the 

expression of survivin and increasing the number of CD8+ T 

cells in the draining axillary lymph nodes, suggesting that 

EgKI-1 has a promising future as an anticancer pharmacological 

effect molecule (104). Calleja et al. found that T. crassiceps ES 

product (TcES) could reduce inflammatory cytokines (IL-1, 

TNF-, IL-33, and IL-17) in colitis-associated colon cancer mice 

and significantly inhibited the occurrence of colon tumors (105). 

This effect was associated with inhibition of STAT3/NF-B sig-

naling activation and interference with lipopolysaccha-

ride-induced NF-κB p65 activation in human colonic epithelial 

cell lines in a proto-oncogene Raf-1-dependent manner (106). 

Tapeworm ES is one of the main reasons for directly in-

ducing changes in host immune effects. In addition to having an 

essential immune regulatory function on macrophages, DCs, and 

lymphocytes (T cells and B cells), it is also involved in inducing 

the body’s inducible nitric oxide. Synthase expression controls 

parasitic infection by promoting nitric oxide release (107). 

Echinococcosis is a chronic disease caused by the larvae of the 

Echinococcus tapeworm (108). The treatment mainly depends 

on albendazole, but it has the disadvantages of a low intestinal 

absorption rate and high liver toxicity. Therefore, researchers 

believe that based on the important roles of acetylcholinesterase 

and nicotinic acetylcholine receptors in the nervous system and 

ion channels of tapeworms, the potential functions of these two 

factors can be excavated and studied as a new generation of 

anthelmintic drugs for tapeworms (109, 110). 
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Conclusion 
The interaction between host and parasite is a multifaceted oc-

currence that involves the influence of virulence factors from the 

parasite and heightened reactions from the host. The optimal 

progression of the host-parasite dynamic is not centered around 

the eradication of the parasite and the resolution of the infection, 

but rather on a state of mutual cohabitation that does not result 

in any harmful consequences for the host. Understanding the 

toxicological and pharmacological effects of parasite-derived 

molecules on the host from the perspective of co-adaptation 

formed during the long-term process of evolution involving the 

parasite and the host will not only deepen the understanding of 

the pathogenic mechanisms of parasites, but it will also benefit 

for the treatment.■ 
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