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The toxicological and pharmacological effects of parasite-derived components<on the host
have received extensive attention. A deep understanding<of the toxicological@nd pharmaco-
logical effects of parasite-derived molecules on the host from the perspective of co-adaptation
formed during the long-term parasite-host evolution process will net.only deepen the under-
standing of the pathogenic mechanisms of parasites from the perspective of pathogenesis but
also benefit from the perspective of treatment. From the perspective of disease, research and
development based on the transformation and application of insect-derived components have
become and will continue to be one of the most popular research tasks in the field of parasit-
ology research. This article reviews the'toxicological and pharmacological effects of several
essential zoonotic parasites and their parasites’in recent years in inducing and regulating host
immune metabolism-related diseases and makes suggestions for the future direction of para-
sitology research.
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HE relationship between parasitic protozoa and worms
and their hosts (including humans) is formed through
interactions during the co-evolution of both (1). With the
development of new theories, new concepts, and new techniques
in biological sciences, it is possible for researchers to deepen
their understanding of host-parasite interactions at a higher and
deeper level of cell and molecular biology. From an evolutionary
point of view, host groups always increase genetically deter-
mined resistance to counteract the harmful effects of parasites,

https://bonoi.org/index.php/si

and parasites always increase genetically determined invasive-
ness, and a series of mechanisms to evade or antagonize host
attacks have evolved (2). This interaction determines the clinical
outcome of parasitic infection, of which the host-parasite im-
munological relationship or interaction may be the most critical.
Studies have focused on the in-depth excavation of the
host-parasite immunological relationship or interaction, reveal-
ing the biological phenomenon that the host’s immune response
to parasites is a “double-edged sword”, and clarifying the origin
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of immunopathological damage. Toxicological effects have be-
come the key pathological basis of many parasitic diseases,
providing intervention targets for the prevention and treatment
of them (3). At the same time, researchers have also revealed
that certain parasites, especially worms, can not only reduce the
level of parasite-specific immunity but also regulate the host’s
autoimmunity and allergic inflammatory responses through ex-
cretion and secretion components, which can improve the host’s
immune and metabolic stability and the pharmacological effects
of the state.

Research in parasitology focuses on three main areas: the
molecular biology of the host-parasite relationship, the discov-
ery of antiparasitic drugs and vaccines, and the discovery of uses
for the treatment of human diseases. Clearly, the study of para-
site-derived immunomodulatory components, which can help
translate current and future research results into potential treat-
ments, even though it is a challenge. Discussion of the immune
response and modulation of parasites, particularly helminths, in
the context of novel therapeutic drug discovery affirms the
pharmacological effects of insect-derived components on the
host. Parasite-derived molecules may have more potential than
the traditional route to new drug development (4). The pharma-
cological effects of parasite-derived components on the host are
formed through evolutionary selection pressure during the
co-evolution of the parasite and the host (5). We herein review
the toxicological and pharmacological effects and mechanisms
of several important parasite-derived components and puts for-
ward opinions and suggestions for the future direction of: this
field.

Toxicology and Pharmacological Effects of
Protozoa

Protozoa are single-celled eukaryotes with a simple.structure
that can parasitize human tissuesgorgans, cells, and body fluids.
They can participate in the host’s immune response and immune
regulation process through the secretion of various effector
molecules.

Toxoplasmagondii
Toxoplasma gondii is a critical opportunistic pathogenic proto-
zoan. The growth and reproduction cycle of Toxoplasma gondii,
its ability to invadechost cells, virulence, and immune escape
process. are all related to soluble tachyzoite antigens (STAQ)
and/or Toxoplasma gondii tachyzoite excretion/secretion antigen
(ESA). In the early stage of Toxoplasma gondii infection of host
cells, micronemesprotein (MIC) and rhoptry protein (ROP) play
an important role“in the process of tachyzoite recognition, at-
tachment, and invasion of host cells, and then the formation of
parasitic vacuoles; and dense granule protein (GRA) plays a key
role in the process of obtaining nutrients from the host to main-
tain survival and reproduction (6). Etheridge et al. developed a
tandem affinity protein labeling and purification method and
clarified that the pathogenic mechanism of Toxoplasma gondii is
mainly through the combination of ROP18, ROP5, and ROP17
to become a key acute virulence factor, which can directly target
phosphorylation (7). Immune-associated GTPases, in turn, pro-
tect the parasite from clearance by activated macrophages (8).
The exploration of the application value of Toxoplasma
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gondii-derived molecular transformation has always been the
focus in this field. Mercer et al. used the cpsl-1 Toxoplasma
gondii strain to knock out GRA24 and found that GRA24 can
induce p38 MAPK activation and downstream IL-12 production
in host macrophages to protect immunity (9). It was further
found that its inducibility was independent of Toll-like recep-
tor/myeloid differentiation factor 88 (TLR/MyD88) signal acti-
vation. In addition, GRA7 relies on its C-terminus (GRA7-V) to
interact with and ubiquitinate the RING domain.of.the TRAF6
molecule downstream of TLR4, thereby indudcing the activation
of nuclear factor B signaling and the release of inflammatory
cytokines (10). Immunization with GRA7-V mice can induce
Th1 immune responses and exert protective effects against Tox-
oplasma gondii infection. Pulmonary toxoplasmesis is more
common in organ transplantation and. HIV-infected, patients,
with severe clinical manifestations (11). Exploring the function
and mode of action of ROP16 onhost immune cells is of great
significance for exploring drug targets and vaccine candidates
for the treatment of\toxoplasmosis. “The researchers screened
chemokine «<€XC motif ligand 11, TLR3, chemokine CC motif
ligand 26, human leukocyteantigen E, signal transduction tran-
scription activator 2 used the eps1-1 Toxoplasma gondii strain to
knock out GRA24 and found that GRA24 can induce p38
MAPK activation and downstream IL-12 production in host
macrophages to protectimmunity (12). It was further found that
its inducibility was<ndependent of Toll-like receptor/myeloid
differentiation factor 88 (TLR/MyD88) signal activation (13). In
addition, GRA7 relies on its C-terminus (GRA7-V) to interact
with-and ubiquitinate the RING domain of the TRAF6 molecule
downstream of TLR4, thereby inducing the activation of nuclear
factor B signaling and the release of inflammatory cytokines
(14). Immunization with GRA7-V mice can induce Thl immune
responses and exert protective effects against Toxoplasma gondii
infection (15). Sahar et al. expressed 49 recombinant proteins of
Toxoplasma gondii and screened out hexavalent candidate vac-
cine molecules (pH2, pA4, pE4, pD6, pE6, pH6) and found that
they had good efficacy against acute lethal toxoplasmosis (16).
Wang et al. used Saccharomyces cerevisiae to express TgMIC16
protein ()CTCON2-TgMIC16/EBY100) and found that it could
induce higher levels of humoral and cellular survival of Toxo-
plasma gondii (17). Recombinant T. gondii heat shock protein
70 (TgHSP70) can enhance the induction of nitric oxide expres-
sion and prevent the formation of cysts in the brain of Toxo-
plasma gondii, accompanied by higher IgG1l antibody levels
(18). In view of the important characteristics of the
pro-inflammatory response induced by the host infection with
Toxoplasma gondii, Toxoplasma STAg was injected into preg-
nant mice to induce maternal immune activation (typical
Th1/Th17 immune bias) and found significant autism-like be-
haviors such as social impairment, repetitive stereotyped behav-
ior, etc (19). However, the following issues remain to be re-
solved: (i) the difference between the Toxoplasma gondii antigen
STAg and traditional pathogenic molecules (lipopolysaccharide,
and polyinosinic acid) in the model of inducing autism-like be-
havior in offspring; (ii) the existence of a molecule capable of
exerting the above-mentioned toxicological effects.

Chronic infection with Toxoplasma protects mice from
other pathogens, including Listeria monocytogenes, Salmonella
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typhimurium, Cryptococcus neoformans, Moloney leukemia
virus, and Schistosoma monsoni (20, 21). O’Brien et al. used the
Toxoplasma gondii antigen STAg to act on the highly pathogenic
H5N1 avian influenza virus, which can significantly reduce the
virus titer and prolong the survival of mice, indicating that
treatment with STAg can induce the avian influenza virus’s po-
tential immunity (22). In addition, Settles et al. showed that
chronic Toxoplasma infection or the use of the soluble Toxo-
plasma antigen STAg can reduce experimental cerebral malaria
induced by the Plasmodium berghei anka strain by inducing
IFN-y (23). Charest et al. used the temperature-sensitive strain
of Toxoplasma gondii ts-4 as a vector to express the
circumsporozoite protein of Plasmodium yoelii and constructed
a recombinant circumsporozoite protein carboxy-terminal 3 and
found that it could produce a high level of anti-plasmodium
specificity IFN-y, suggesting that the recombination of Toxo-
plasma gondii ts-4 with other pathogen proteins can make the
host obtain protection against other pathogens (24).

In addition, Kim and colleagues found that rGRA8 can
induce colonic cell death through the signaling pathway of pro-
tein kinase C subunit-Sirtuin 3-ATP synthetase F1 subunit and
creatively developed a specific targeting tumor cell membrane
molecule (acidity-triggered rational membrane, ATRAM) con-
jugated GRAS8 multifunctional peptide molecule
(rATRAM-GRA8-M/AS) that was found to have significant
anti-tumor activity (25). At the same time, the dense granule
protein GRA15I1 of the virulence-related molecule of Toxo-
plasma gondii has the ability to induce the M1 polarization of
classically activated macrophages (26).

Leishmania

Leishmania braziliensis metalloproteaseglycoprotein-63 (GP63)
is expressed in both promastigotes and amastigotes, located on
the surface of the worm body, and, has the function of attaching
macrophages to promastigotes (27). These two enzymes are
closely related and are an.important virulence factor (28). Stud-
ies have suggested that the mechanism of GP63-mediated at-
tachment of Leishmania promastigotes is closely related to the
direct binding offmacrophage receptor CR3, and anti-CR3 anti-
bodies can inhibit the binding of GP63 ta macrophages (29). At
the same time; GP63 is crucial in the process of amastigotes
resisting macrophage’lysosome hydrolysis (30). In macrophages,
GP63:has been shown to cleave‘a variety of substrates, such as
protein tyrosine phosphatases, transcription factors, and the
target of rapamycin, thereby benefiting intracellular parasite
survival/ (31).m,Using the GP63-derived polypeptides
LLVAALLAVLLV and AARLVRLAAAGAAVTAAR can in-
duce high levels of anti-Leishmania 1gG antibodies in hamsters
and stimulate the proliferation of lymphocytes, suggesting that
GP63-derived polypeptides also have potential candidate vac-
cine effects (32). Exosomes are eukaryotic extracellular vesicles
that maintain cellular communication in various biological set-
tings. Studies have raised the important point that Leishmania
exosomes are involved in the pathogenic processes of the dis-
ease (33). The exosomes of Leishmania mexicana contain a
series of insect-derived molecules, such as virulence factor
GP63 and protein phosphatase 2C (34). Exosomes can inhibit
the secretion of infected bone marrow-derived macrophages (35).
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Nitric oxide levels can also suppress cellular immune responses
by reducing major histocompatibility complex class | and CD86
molecules on the surface of macrophages, thereby increasing the
survival rate of parasites in cells (36).

Many reports presented Leishmania-derived molecules as
potential diagnostic and vaccine effector molecules, such as the
r21 protein derived from Leishmania infantum (37), the hypo-
thetical protein G (38), hypothetical protein J (39), which have
high sensitivity and specificity for diagnosing canine.and human
leishmaniasis with low cross-reactivity. In addition, researchers
used Leishmania infantis lipophosphoglycan 3 (LPG3) antigen
to immunize infected BALB/c mice and found that it had better
protection and could induce an increase in‘serum 1gG2a anti-
body levels in mice (40). Leishmania infantum pyridoxal kinase
recombinant protein can induce the expression of high, levels of
cytokines interferon-y (IFN=y),interletkin-12 (IL-12) after im-
munization  of _mice, granulocyte-macrophage  colo-
ny-stimulating factor, and specificlgG2a antibodies, suggesting
that recombinant pyridoxal kinase protein.can be used as a po-
tential vaceine molecule, for visceral leishmaniasis (41). The
co-infeetion of Leishmaniarand HIV can be characterized as a
complex system involving alterations in the expression of cell
surface molecules, secretion ofisoluble factors, and intracellular
apoptotic processes. These changes ultimately result in the en-
hancement of infectivity;, replication, and dissemination of both
pathogens (42).

Using the non-pathogenic Leishmania tarentolae as a
model for a novel drug candidate to produce a live vaccine
against anvintracellular pathogen, they recombinantly expressed
human papillomavirus in Leishmania tarentolae E7 protein (L.
tarentolae-E7) and injected it into a mouse model of cervical
cancer (43). They found that E7 molecules can protect mice
from human papillomavirus-associated tumors (44, 45). In addi-
tion, Caner et al. found that Leishmania infantum and
Leishmania tropica could significantly inhibit tumor formation
in 4T1 breast cancer mice and induce high levels of IFN-y and
tumor necrosis factor-o (TNF-a) (46).

Plasmodium

Malaria is a very harmful zoonotic parasitic disease. According
to the World Health Organization, approximately 50% of the
global populace was susceptible to contracting malaria, there
were an estimated 247 million cases of malaria worldwide and
619,000 malaria-related deaths worldwide in 2021 (47). Studies
have shown that Plasmodium falciparum erythrocyte membrane
protein 1 (PfEMP1) is expressed in the asexual stage and is
closely related to the pathogenicity of severe malaria (48, 49).
Plasmodium in red blood cells adheres to the endothelium of
blood vessels in the brain through PFEMP1, triggering the oc-
currence of cerebral malaria, and this process binds to the host
receptor endothelin C receptor, thereby interfering with coagula-
tion, inflammation, cell death, and vascular permeability (50).
Toda et al. found that plasma-derived extracellular vesicles from
patients with Plasmodium vivax could be recognized by human
splenic fibroblasts, and then induced reticulocytes infected with
Plasmodium vivax (P. vivax) and human splenic fibroblasts to
stick (51). In addition, Jiang et al. found that silencing SET
gene-dependent histone H3K36 methylation in Plasmodium
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falciparum can inhibit the expression of pathogenicity-related
genes; silencing SET gene knockout Plasmodium can express all
PfEMP1 proteins, providing a new idea for malaria vaccine
development (52).

VMPOQO01 is a low-level protective vaccine designed based
on the circumsporozoite protein of Plasmodium vivax. On this
basis, Atcheson et al. further discovered that the alleles VK210
and the small peptides of VK247 are highly protective (53). In
addition, it has been pointed out in the literature that the Plas-
modium falciparum merozoite protein complex (PfRH5-
PfCyRPA-PfRipr, RCR) can be used as a target for Plasmodium
falciparum vaccines (54). At the same time, PFHSP90, derived
from Plasmodium falciparum, promotes the development of
parasites in red blood cells by forming a complex with
PfHSP70-1 (55, 56). A variety of antimalarial drugs have been
developed against PfHSP90 in clinical trials (57, 58). Some
believe that Plasmodium infection can initiate the body’s an-
ti-tumor innate and adaptive immune responses by activating the
immune system, and then inhibit tumor growth and metastasis
(59, 60). Due to concerns about the clinical safety of infec-
tion-induced immunotherapy, the protein encoded by variable
region 2 of the Plasmodium protein that binds to chondroitin
sulfate A has been investigated and found that it can directly
target and recognize a variety of tumor cells by binding to
glycosaminoglycans and play a potential important role in inhib-
iting tumor cell proliferation (61, 62).

Toxicology and Pharmacological Effects of
Worms

Parasitic worms and their ES mainly affect the host’s immunity
by acting on the host’s immune system and activating or regu-
lating immune cells. The above-mentioned ES an-
ti-inflammatory components include proteins, extracellular vesi-
cles, glycans, and various metabolites, which has‘opened up new.
fields and directions for the study of the bialogical characteris-
tics of worms.

Hookworm

Hookworm infection can lead to damage to human intestinal
wall and long=term chronic blood loss (63). In severe cases, it
can lead to developmental delays and other symptoms (64).
After hookworm infection, the main advantage is to induce host
immune responses.such as 1LC24Th2, M2, and eosinophils (65).
Its pharmacological effects on allergic and autoimmune diseases
through hookworm infection or hookworm-derived molecules
have been studied;.and found that (i) the asymptomatic charac-
teristics of hookwarm mild infection and the immunological
effects;\(ii) the ES components of hookworm help the intestinal
hookworm, and the host co-evolve from the immune system
attack, and then allow the hookworm to survive.

Some researchers used Nippostrongylus brasiliensis to
prevent and treat type 2 diabetic mice and found that the fasting
blood glucose, oral glucose tolerance, and body weight of dia-
betic mice were significantly reduced, and it was clear that the
reduction of systemic and local inflammation was related to
intestinal compositional changes in the microbiota (66). Further
studies found that the extracellular vesicles secreted by E.
brasiliensis up-regulate high levels of the anti-inflammatory

https://bonoi.org/index.php/si

Sl | June 30, 2023 | vol. 42 | no. 6

cytokine IL by inhibiting the key cytokines (IL-6, IL-1, IFN-,
and IL-17a) involved in the pathology of colitis in order to pre-
vent induced colitis in mice (67). The netrin domain-containing
protein 1 secreted by Necator americanus can prevent acute
2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice,
mainly by inducing suppression of type | immunity in the gut
(68). In response to signaling factors (e.g., TNF, IL-6, and IL-1),
M1 polarization is downregulated (69). Wangchuk et al. found
that the anti-inflammatory protein AIP2, _derived from
Ancylostoma caninum, can inhibit the airway inflammation of
ovalbumin (OVA)-induced asthmatic mice and reduce human
dendritic cells (DCs), and revealed that AIP-2 is mainly captured
by mesenteric CD103+ DC cells and then induces the important
molecular mechanism of regulatory T cells (Treg) cells (70).

Low-molecular-weight ‘metabolites of somatic, extracts
(LMWM-SE) of H. caninum, and the low-molecular-weight
metabolites of excreted”secretionsproducts (LMWM-ESP) can
significantly inhibit colitis and protect,the colon tissue structure
from damage<(70). \Gas chromatography-mass spectrometry
(GC-MS) and liquid chromatography (LC-MS) analysis showed
that there, were 46 polar metabolites, 22 fatty acids, and 5
short-chain fatty acids (SCFA), in LMWM-SE; LMWM-ESP
presents 29 polar metabolites, 13 fatty acids, and 6 SCFAs (71).
The small metabolites mentioned above, especially SCFAs, have
stronganti-inflammatory, properties. Williamson et al. identified
Ancylostoma canisindm and Necylos americana peptide 1 from
the ES of Ancylostoma canisinum and Necylos americana,
which can significantly reduce the body weight of
2,4 6-trinitrobenzenesulfonic acid-induced colitis model (72).
Mass reduction and colonic atrophy, edema, ulceration, and
necrosis, showing good anti-colitis properties; at the same time,
these hookworm peptides can induce the up-regulation of ulcer
epithelial repair-related genes (nlrp3, mmp, and smad) and in-
hibit the mucous membrane of goblet cells (73).

Schistosoma

Schistosomiasis remains a serious but neglected tropical disease
worldwide. There are five species of schistosomiasis that parasi-
tize the human body. The main cause of disease of
Schistosomiasis japonicum is the deposition of eggs in the liver
and intestines, leading to tissue granulomatous lesions and sec-
ondary fibrosis (74). Studies have found that components de-
rived from schistosomiasis have potential toxicological and
pharmacological effects on various diseases. First of all, mole-
cules derived from Schistosoma japonicum eggs can be involved
in promoting the formation of liver granulomas, such as the
worm-derived protein SjE16.7 can recruit neutrophils and in-
duce the formation of liver inflammatory granulomas (75, 76).
Blocking SjE16.7 in vivo could significantly alleviate
egg-induced liver immunopathological damage (77, 78). Takaki
et al. used zebrafish larvae as a model to study egg-induced
macrophage recruitment and granuloma formation and found
that the Schistosoma japonicum-derived protein omega-1 could
mediate the initial stage of macrophage recruitment, which
Chemotactic activity depends on its RNase activity (79). When
lentivirus was used to interfere with omega-1 in eggs, the tail
vein injection of eggs into mice could significantly inhibit the
immunopathological changes of egg granulomas in the lungs
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(80). Macrophages stimulated by different stages of Schistosoma
japonicum infection or different insect-derived molecular com-
ponents (soluble adult worm antigen, soluble egg antigen),
showed that the macrophages were polarized to M1 and M2
respectively, suggesting that the insect-derived molecules were
involved in schistosomiasis the acute and chronic inflamma-
tion-mediated injury process of infection (81, 82). In addition,
macrophages activated by soluble egg antigen induced CD4+ T
cells to differentiate into follicular helper T cells in a manner
dependent on inducible costimulatory molecules and their lig-
ands, and further revealed that follicular helper T cells
Chemotaxis of eosinophils by inducing levels of the chemokine
CXC motif ligand 12 in turn promotes hepatic pathology in-
duced by schistosome infection (83, 84).

Second, schistosome-derived components also have po-
tential transformational application value in the progression of
various diseases. Studies have shown that the recombinant pro-
tein Sj16 derived from Schistosoma japonicum can inhibit the
polarization of M2 macrophages and slow down the level of
hepatic granulomatous inflammation and fibrosis induced by
Schistosoma japonicum infection (85, 86). The transcriptional
transactivator triosephosphate isomerase (Tat-TPI) derived from
Schistosoma japonicum could induce lymph nodes and spleen to
produce stronger CD4+ and CD8+ T cell responses and resulted
in a significant reduction in the area of egg granulomas in the
liver (87). Schistosoma mansoni and Schistosoma japonicum
infections of collagen-induced arthritis (CIA) mice can¢ignifi-
cantly alleviate the severity of arthritis in mice (88, 89). After
intradermal injection of Schistosoma mansoni cercariae protein
into CIA mice, it can significantly reduce the arthritis score ‘and
induce an increase in the level of Treg cells in mice (90). CIA
mice  were treated with  recombinant  Schistosoma
japonicum-derived cysteine protease<inhibitor (rSjCystatin) and
found that rSjCystatin can significantly reduce the clinical score;
incidence rate, and joint histopathological score of CIA mice; at
the same time, rSjCystatin‘can also inhibit increased levels of
IL-4, IL-10, and collagen-specific:lgG1 in diseased mice (91).

HSP is an important stress protein that is widely present in
hosts and parasiteés. One of the more abundant proteins in the
egg protein of Schistosoma japonicum is HSP40 (Sjp40), which
can inhibit“the activation»of hepatic stellate cells through the
STAT3/p53/p21 pathway and has_.the potential to inhibit liver
fibrosis. (92, 93). At the same time, Sjp40 can be secreted into
the bload \in the early stages of infection, which has potential
diagnostic ' value. In “addition, peptides p6 (51-70), p25
(241-260), and p30_(291-310) derived from Sjp40 were able to
suppress airway inflammation in OVA-induced allergic asthma
mice_ by inducing IFN-y production, indicating that
helminth-derived ~ peptides can  provide a  novel
immunoprotective utility (94). Schistosoma japonicum egg an-
tigen Sjp40 targets hepatic cell pattern recognition receptor
CD36, activating downstream AMP-dependent protein kinase
signaling, and then inhibiting liver lipid formation, indicating
that Sjp40 has potential translational value in modulating hepat-
ic lipid metabolism (95).

M1 macrophages mainly promote the inflammatory re-
sponse and can inhibit the repair of peripheral nerves, while M2
macrophages can promote the repair of injured peripheral nerves

https://bonoi.org/index.php/si

Sl | June 30, 2023 | vol. 42 | no. 6

(96). Studies have confirmed that Schistosoma japonicum mouse
human epitope 1 (SJMHE1) can promote peripheral myelin
growth and functional regeneration by inducing M2 macro-
phage-dependent mechanisms, indicating that SIMHEL has the
ability to improve peripheral therapeutic potential in
neurorestoration (97). SIMHE1L treatment of OVA-induced ex-
perimental asthmatic mice can inhibit airway inflammation in
allergic mice, reduce infiltrating inflammatory cells in the lungs
and bronchoalveolar lavage fluid, reduce the percentage of Th2
cells, and increase the expression of the Thland Treg ratios, (98,
99). Moreover, SIMHEL can also inhibit dextran sodium sul-
fate-induced acute and chronic colitis in_mice, upregulate|the
proportion of Treg cells in mesenteric lymph nodes, and pro-
mote the production of 1L-10 (100).

Tapeworm
Taenia species are diverse and widely distributedgwith different
biological characteristics and serioussharm toshumans and ani-
mals (101). Cui et al..collected ESP and cysticercoid cystic fluid
from Taenia solium andanalyzed them by LC-MS, finding that
there were 206 and 247 different proteins in the cystic fluid and
ESP,/ respectively, and that, these proteins had obvious
pro-inflammatory and anti-inflammatory properties (102).
Ranasinghe et al. found that Echinococcus granulosus Kunitz
type \protease inhibitor family 1 (EgKI-1) exhibited
dose-dependent inhibition of various human cancer cells in vitro
(including growth and migration of breast, melanoma, and cer-
vical_cancer cell lines) without affecting normal cell growth
suggestingsthat EgKI-1 prevents cancer cell growth by disrupt-
ing the cell cycle and inducing apoptosis in cancer cells (103).
In addition, EgKI-1 significantly inhibited the growth of mela-
noma in B16-FO mice, which may be achieved by reducing the
expression of survivin and increasing the number of CD8+ T
cells in the draining axillary lymph nodes, suggesting that
EgKI-1 has a promising future as an anticancer pharmacological
effect molecule (104). Calleja et al. found that T. crassiceps ES
product (TcES) could reduce inflammatory cytokines (IL-1,
TNF-, IL-33, and IL-17) in colitis-associated colon cancer mice
and significantly inhibited the occurrence of colon tumors (105).
This effect was associated with inhibition of STAT3/NF-B sig-
naling activation and interference with lipopolysaccha-
ride-induced NF-xB p65 activation in human colonic epithelial
cell lines in a proto-oncogene Raf-1-dependent manner (106).
Tapeworm ES is one of the main reasons for directly in-
ducing changes in host immune effects. In addition to having an
essential immune regulatory function on macrophages, DCs, and
lymphocytes (T cells and B cells), it is also involved in inducing
the body’s inducible nitric oxide. Synthase expression controls
parasitic infection by promoting nitric oxide release (107).
Echinococcosis is a chronic disease caused by the larvae of the
Echinococcus tapeworm (108). The treatment mainly depends
on albendazole, but it has the disadvantages of a low intestinal
absorption rate and high liver toxicity. Therefore, researchers
believe that based on the important roles of acetylcholinesterase
and nicotinic acetylcholine receptors in the nervous system and
ion channels of tapeworms, the potential functions of these two
factors can be excavated and studied as a new generation of
anthelmintic drugs for tapeworms (109, 110).
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Conclusion

The interaction between host and parasite is a multifaceted oc-
currence that involves the influence of virulence factors from the
parasite and heightened reactions from the host. The optimal
progression of the host-parasite dynamic is not centered around
the eradication of the parasite and the resolution of the infection,
but rather on a state of mutual cohabitation that does not result
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