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Parkinson’s disease (PD) is an age-related neurodegenerative disease, and its main patholog-

ical feature is the specific reduction of dopamine neurons in the substantia nigra of the mid-

brain and α-synuclein aggregates. However, the specific molecular mechanism of the degen-

eration of dopamine neurons in the substantia nigra is still not fully understood. 

Neuroinflammation is involved in the development of PD, and microglia-mediated 

neuroinflammation plays an important role in the degeneration of dopamine neurons. This ar-

ticle will review the mechanism of microglia-mediated neuroinflammation in the pathological 

process of PD, and provide new understanding for the molecular mechanism and treatment of 

PD. 
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HE reduction of dopamine neurons in the substantia 

nigra and the formation of Lewy bodies are the main 

pathological features of Parkinson’s Disease (PD) (1). 

Clinically, the main symptoms of PD include resting tremor, 

posture and gait disturbance, and bradykinesia. In addition, PD 

patients are also accompanied by some non-motor symptoms 

such as sleep disturbance, fatigue, anxiety, depression, and cog-

nitive decline (2). Studies have found that genetic factors, epi-

genetic changes, mitochondrial dysfunction, and proteasome 

system abnormalities are all important factors that promote the 

occurrence of PD (3, 4). The specific molecular mechanisms of 

the degeneration of dopamine neurons in the substantia nigra 

and the formation of Lewy bodies are not fully understood yet. 

It was found that microglia in the brain of PD patients showed a 

significant activation state (5, 6), suggesting that neuroin- 

flammation plays an essential role in the pathological process of 

PD. In addition, animal experiments and in vitro experiments 

have also shown that the neuroinflammatory response mediated 

by microglia is involved in the development of PD (7). 

Microglia account for 5% to 12% of all glial cells, but the 

specific proportion of each brain region is differentially ex-

pressed in different brain regions (8). Microglia have the func-

tion of immune defense and maintain homeostasis in the brain 

and are considered to be the main immune cells in the brain (9). 

Under normal physiological conditions, microglia are in a qui-

escent or inactive state, but they can still move through active 

contraction and expansion movements, thus participating in the 

regulation of the entire nervous system (10). Under external 

stimuli and injury conditions, microglia will undergo significant 

changes in morphology, and quickly move to the injury site, and 
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then participate in tissue injury repair and disease occurrence 

and development (11). The activation of microglia will produce 

a large number of inflammatory factors such as interleukin-1β 

(IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and IL-12, which 

in turn lead to an inflammatory response in local tissues (12). 

This article will review the role of microglia-mediated 

neuroinflammation in PD, and provide new references for the 

prevention and treatment of PD. 

 
Microglia 
 
Source 
Microglia are widely distributed in the central nervous system, 

and the source of microglia is still controversial. Some believe 

that microglia originate from mesoderm cells, such as fetal 

macrophages in the yolk sac or embryonic mesenchymal cells in 

the pia mater (13). With the development of the embryo, these 

mesoderm cells in late invasion of the brain to form microglia. 

In contrast, some believe that microglia originate from 

neuroectoderm rather than mesoderm. Using macro-

phage-specific marker protein Ricinus communis agglutinin-1 

(RCA-1) and microglia-specific marker protein for im- 

munestaining, and the results suggested that microglia were not 

derived from pial mesenchymal cells but is derived from the 

germinal matrix (14). In addition, some believe that microglia 

originate from monocytes in blood circulation (15). Therefore, 

more experimental evidence is still needed to elucidate the 

source of microglia. 

 
Biological Activity 
As immune cells in the brain, microglia are currently considered 

to have two states, namely M1 type and M2 type, in which M1 

type cells are in a pro-inflammatory state, M2 type cells are in 

an anti-inflammatory state, and M2 type cells are in an an-

ti-inflammatory state (16). In the M1 state, microglia mainly 

secrete inflammatory factors, such as IL-1β, IL-6, TNF-α, IL-12 

and inducible nitric oxide synthase (iNOS),which can cause 

inflammation in local tissues, leading to tissue damage and cell 

apoptosis that in turn can cause neurodegeneration. Therefore, in 

general, these inflammation-related factors serve as marker pro-

teins of M1 microglia. Studies have found that in vitro 

co-stimulation of primary cultured microglial cells with inflam-

mation-related factors such as bacterial lipopolysaccharides 

(LPS) and γ-interferon (IFN-γ) can induce microglial cells to 

form M1 type (17). In the M2 state, microglia mainly secrete 

growth factors and anti-inflammatory factors, such as trans-

forming growth factor-β (TGF-β), IL-10, arginase-1 (Arg-1), 

resistin-like alpha (RELMα/FIZZ1), polysaccharase (chitinase 

3-like protein 3, CHI3L3/YM1 ) and CD206 and other factors, 

therefore, these related factors are usually used as marker pro-

teins of M2 microglial cells (18, 19). These M2-related factors 

have the effect of anti-inflammatory response, which can reduce 

the inflammatory response of tissue, thereby promoting the re-

pair process of tissue (20). Stimulation of microglial cells with 

IL-4 in vitro can induce the M2 state of microglial cells (21). 

Inflammation and non-inflammation will cause changes in 

the expression levels of miRNAs in microglial cells, and these 

miRNAs regulate intracellular inflammation-related signaling 

pathways, thereby producing pro-inflammatory or an-

ti-inflammatory effects. For example, the expression level of 

miR-155 in microglia can be significantly up-regulated under 

the co-stimulation of inflammatory stimuli such as LPS and 

IFN-γ, while IL-4 stimulation cannot cause the expression of 

miR-155 in microglia (22, 23). Studies have found that miR-155 

can regulate downstream pro-inflammatory signaling pathways 

such as SOCS1, Creb, and Bcl6, and the above studies suggest 

that miRNAs also specifically participate in the state regulation 

of microglia (24, 25). Under normal circumstances, these two 

states of microglia are in a dynamic balance, but under external 

injury stimuli or disease states, this balance will be disrupted, 

causing the body to respond quickly and regulate a homeostasis 

of microglia. However, it is not clear what form and molecular 

mechanism of microglia exist in these two states under physio-

logical and pathological conditions. 

Many factors can affect the two states of microglia, and 

under certain conditions, the two states of microglia can change. 

Kim et al. found that acetylcholine (Ach) could reduce the ex-

pression levels of pro-inflammatory factors IL-1β and IL-6 in 

LPS-induced microglial cell line BV2 cells by Western blot and 

real-time quantitative PCR (26). Reduce the expression levels of 

anti-inflammatory factors IL-4 and IL-10 can significantly re-

duce the activity of inflammation-related pathways 

JAK2/STAT3 and PI3K/Akt pathways (27). Interestingly, re-

ducing the expression level of the Ach receptor nicotinic acetyl-

choline receptor α7 subtype (α7nAChR) by virus transfection 

can significantly reduce the effect of Ach (28). It is suggested 

that Ach can change the expression level of downstream signal-

ing molecules by combining with its receptor α7nAChR, and 

then promote the transformation of BV2 cells from M1 to M2. 

In addition, β-Caryophyllene (β-CP) significantly reduces the 

expression levels of pro-inflammatory factors IL-1β and TNF-α 

that were induced by LPS through Type II cannabinoid receptor 

(CB2), and up-regulates the expression of downstream an-

ti-inflammatory related factors IL-10 and Agr-1 that promote the 

transition of microglial cells from the M1 state to the M2 state 

(29). These show that the two states of microglia can be trans-

formed under certain conditions. In addition, studies have found 

that neurological diseases such as Alzheimer’s disease (AD) and 

multiple sclerosis (MS) are accompanied by the occurrence and 

development of inflammation (30, 31). Therefore, the two dif-

ferent functional states of microglia, either the presence or the 

transformation provide new therapeutic targets for inflamma-

tion-related CNS diseases. 

 
The Role of Microglia-Mediated 
Neuroinflammation in PD 
 
Microglia and the Development of PD 
In an inflammatory state, microglia will show a significant acti-

vation state, mainly in cell morphology and specific protein 

expression. On the one hand, the cell body becomes larger, and 

the processes shorten and thicken; on the other hand, the expres-

sion level of the specific marker protein calcium binding protein 

IBA1 of microglia will be significantly increased. The process 

of PD is accompanied by the development of inflammatory re-

sponse. Kübler and coworkers used positron emission tomogra-
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phy to find that a large number of microglial cells were activated 

in the brain of PD patients (32). In the PD animal model induced 

by neurotoxin MPTP and 6-OHDA, microglia also showed a 

significant activation state (33), indicating that microglia, as 

immune cells in the brain, play a pivotal role in the inflammato-

ry response process in the pathological process of PD. 

Under the action of external stimuli such as α-synuclein 

aggregation or LPS, the microglia in the body will respond 

quickly and be in a significant activated state, releasing a large 

number of inflammatory factors, making the injured site in an 

inflammatory state (34). These inflammatory factors further act 

on astrocytes. Stimulated astrocytes will also activate and re-

lease inflammatory factors, and the inflammatory factors re-

leased by microglia and astrocytes act on dopamine neurons at 

the same time, thereby causing degeneration of dopamine neu-

rons (35). Furthermore, diseased neurons will release a large 

number of toxic factors to continuously activate microglia, 

making the body in an obvious inflammatory state, and this 

cyclical process eventually aggravates the occurrence and de-

velopment of PD (36). Therefore, the inflammatory response 

mediated by microglia is closely related to the occurrence and 

development of PD. 

 
Mechanism of Action 
Peng et al. found that the activation of microglia induced by 

LPS can significantly enhance the degeneration process of do-

pamine neuron cell lines induced by the neurotoxin MPP+, and 

increase the expression of JNK and NF-κb in SH-SY5Y cells 

level (37). In addition, the study also found that activated mi-

croglia can enhance the expression levels of apoptosis-related 

genes such as bax in dopamine neuron cell lines (37). The above 

results suggest that the activation of microglia induced by drugs 

in vitro may aggravate the death of dopamine neurons by regu-

lating the activity of specific signaling pathways in dopamine 

neurons (38). Chronic mild stress stimulation can significantly 

enhance LPS-induced death of dopamine neurons in PD rats 

(39). First, chronic unpredictable mild stress can significantly 

enhance the activation of microglial cells and inflammatory 

response in the rat brain, and second, it can also significantly 

increase the activation of inflammasome NLRP3 and the death 

of dopamine neurons in the substantia nigra. The activation of 

microglia affects the survival of dopamine neurons by regulating 

the activity of inflammasomes in the substantia nigra and the 

inflammatory response (40). Therefore, effectively reducing the 

degree of activation of microglia can significantly reduce the 

degenerative process of dopamine neurons in drug-induced PD 

models. 

Nitrated or oxidized α-synuclein can induce oxidative 

stress in microglia and promote the formation of M1 activation 

in microglia (41). MPTP or LPS treatment can induce microglial 

cells to produce a large number of inflammatory factors, so that 

microglial cells present an M1-type activated form (42). Mere-

dith et al. found that long-term injection of MPTP and 

probenecid in mice would cause the number of an-

ti-inflammatory microglia to be significantly more than that of 

pro-inflammatory microglia in the early stage (43). However, 

with the gradual injection of drugs, the number of 

pro-inflammatory microglia the number of glial cells increased 

significantly, while the number of anti-inflammatory microglia 

decreased significantly, indicating that in a specific period of PD, 

M2 microglial cells dominated, and with the gradual aggravation 

of the disease, most of the microglial cells released inflammato-

ry factors, so that most of the microglia showed a significant M1 

state. Long-term MPTP and probenecid treatment can cause a 

significant decrease in the expression level of CD206 in micro-

glial cells in the substantia nigra region of mice, indicating the 

complexity of the two activation types of microglial cells in the 

process of PD (44, 45). At present, studies have shown that the 

inflammatory response produced by M1 glial cells can lead to 

the degenerative process of dopamine neurons (46, 47). Howev-

er, it is not completely clear that M2 glial cells are involved in 

the development of PD. 

Yu et al. used microglial cell line BV2 cells and dopamine 

neuron cell line MN9D cells for co-culture, treated with neuro-

toxin 6-OHDA and microtubule stabilizer EpoB, and used 

TUNEL apoptosis staining to detect the activity of MN9D cells 

(48). EpoB can significantly reduce the expression levels of 

microglial inflammatory factors such as IL-1β, IL-6 and TNF-α, 

thereby inhibiting the M1 state of microglial cells (49). First, 

EpoB can significantly reduce the activation of microglial cells 

in the substantia nigra area caused by 6-OHDA, and second, it 

can also significantly reduce the neurotoxicity caused by 

6-OHDA and substantially enhance the exercise capacity of 

mice. These findings suggest that EpoB reduces the neurotoxic 

effect of 6-OHDA on dopamine neurons by inhibiting the transi-

tion of microglia to the M1 state (6). Therefore, inhibiting the 

M1 state of microglia can significantly reduce the neurotox-

in-induced dopaminergic degenerative process. Reducing the 

M1 state of microglia or enhancing M2 microglia during the 

development of PD is expected to be an effective way to slow 

down the progress of PD. 

The inflammasome NLRP3 plays a critical role in the de-

velopment of neuroinflammation (50). Abnormal accumulation 

of metabolites such as β-amyloid and 25-hydroxycholesterol in 

the body will lead to the activation of NLRP3, which in turn 

leads to the activation of apoptosis-related enzyme-cysteine- 

containing aspartic acid hydrolase 1 (caspase-1) and the release 

of IL-1β, thereby initiating the inflammatory response process 

(51, 52). Deletion of NLRP3 significantly reduced the activation 

of microglial cells and the death of dopaminergic neurons in the 

substantia nigra region of mice induced by MPTP (53). 

NLRP3-knockout mice showed significantly enhanced exercise 

capacity after MPTP treatment (54). The activation degree of 

NLRP3 inflammasome is closely related to the occurrence and 

development of PD. Kaempferol can reduce the degeneration of 

dopamine neurons in PD mice by inhibiting the activation of 

inflammasome NLRP3 (55). Reducing the degree of activation 

of the NLRP3 inflammasome can significantly reduce the neu-

rotoxin-induced degenerative pathological process of dopamine 

neurons (56, 57). Therefore, NLRP3 plays a crucial role in the 

degenerative process of PD. MPTP and ATP treatment can in-

crease the activity of caspase-1 downstream of microglial cells, 

which can lead to an increase in the expression level of IL-1β, 

while knockdown of NLRP3 can significantly reduce the in-

crease of caspase-1 activity and IL-1β induced by MPTP and 

ATP (58). MPTP and ATP stimulation can significantly increase 
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PI-positive SH-SY5Y cells, but in the co-culture system of 

SH-SY5Y cells and NLRP3-/- microglial cells, MPTP and ATP 

stimulation did not cause obvious SH-SY5Y cells die (59). Thus, 

activation of the NLRP3 inflammasome in microglia plays a 

critical role in the degeneration of dopaminergic neurons. 

 
Conclusion 
The neuroinflammatory response mediated by microglia plays 

an essential role in the occurrence and development of PD. 

However, the specific mechanism of the two states of microglia 

in PD is not completely clear. Microglia showed different acti-

vation states under different conditional stimuli, showing M1 

type and M2 type in pro-inflammatory and anti-inflammatory 

states, respectively. The two states of microglia can change un-

der certain conditions. Studies have found that microglia in the 

two states exhibit two completely different functions of 

pro-inflammatory and anti-inflammatory. Therefore, it is better 

to explore the function of microglia. The mechanism of action of 

the two states in the occurrence and development of PD and the 

relationship between the two states help to understand the path-

ogenesis of PD more profoundly, and provide more possibilities 

and more accurate methods for the prevention and treatment of 

PD. 

Moreover, the activation of inflammasomes in microglia 

is also involved in the process of microglia-mediated 

neuroinflammation. However, there are many types of 

inflammasomes, and the role of each inflammasome in the pro-

cess of microglia-mediated inflammatory response is not yet 

fully understood. Therefore, more clinical and animal experi-

ments are needed to elucidate the specific role of inflammasome 

in the process of microglial inflammatory response, so as to 

provide a more in-depth understanding of the function of micro-

glial cell-mediated neuroinflammation in PD. many theoretical 

bases.■ 
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