Gene Therapy of Malignant Tumor
A Challenge but a Promising Way

Masami Fujita*
Nihon University, 4 Chome-8-24 Kudanminami, Chiyoda City, Tokyo, Japan
* All correspondence should be sent to: Dr. Masami Fujita.

Author’s Contact: Masami Fujita, Ph.D., E-mail: masamifujita1@gmail.com
DOI: https://doi.org/10.15354/si.23.co152
Funding: No funding source declared.
COI: The author declares no competing interest.

The study of gene therapy for malignant tumors is a rapidly developing area that shows great potential in the battle against cancer. Although it has the capacity for success, tackling the complexity and variety of tumor biology remains a substantial obstacle. Several approaches have been investigated to address this problem, including the use of viral vector-based gene delivery systems, non-viral techniques such as nanoparticles and electroporation, and genome editing technologies like CRISPR-Cas9. These treatments seek to alter the genetic material of tumor cells in order to either impede their growth or trigger cell death. Nevertheless, there exist substantial obstacles that must be surmounted prior to the regular implementation of gene therapy in clinical settings. These factors include assuring precise targeting, minimizing unintended consequences, optimizing the transport of therapeutic genes into tumor cells, and controlling immune responses to the vectors used. To overcome these problems, it will be necessary to establish interdisciplinary alliances and conduct thorough preclinical research to guarantee both safety and effectiveness. However, due to the tremendous progress in molecular biology and gene editing technology, gene therapy has significant potential as a new method for effectively treating malignant tumors.

Keywords: Gene Therapy; Malignant Tumor; Challenges; Molecular Targets; Efficacy

Science Insights, 2023 December 31; Vol. 43, No. 6, pp.1147-1149.
The intricate nature of malignant tumors resides in their genetic composition. Genetic mutations and changes are crucial factors in the formation and advancement of cancers. The objective of gene therapy is to rectify these genetic abnormalities and reinstate regular cellular activity, therefore impeding the proliferation of tumors and their spread to other parts of the body (3). Nevertheless, the advancement of secure and efficient gene delivery technologies has posed a significant challenge in the industry. Effective delivery of therapeutic genes to tumor cells necessitates advanced methodologies that can circumvent the immune system and selectively target tumor tissues, while minimizing any detrimental consequences.

An encouraging strategy in the field of gene therapy for cancerous tumors involves utilizing viral vectors as vehicles to specifically transport therapeutic genes to the tumor cells (4). Viruses possess an inherent capacity to invade specific cells and transport their genetic material. Scientists have been manipulating viruses to eliminate their disease-causing characteristics and transform them into effective vehicles for delivering therapeutic DNA (5). This methodology has demonstrated promising results in pre-clinical investigations and holds the potential to offer a focused and enduring therapeutic alternative for individuals with malignant tumors.

An additional obstacle in the field of gene therapy for malignant tumors lies in the capacity to accurately detect and focus on distinct genetic defects that are seen in various tumor types. Every tumor is distinct and may have various gene alterations, posing difficulty in devising a singular gene therapy strategy that can efficiently address all malignancies (6). In order to surmount this hindrance, researchers are in the process of creating individualized gene therapy methods that employ the patient’s specific genetic data to devise customized treatments (7). Through the process of sequencing the genome of a tumor, scientists are able to detect and analyze specific genetic changes, allowing them to devise precise methods to precisely address these anomalies.

The immune system’s reaction to gene therapy poses a notable obstacle in this domain. The immune system has the ability to identify foreign DNA and initiate an immunological response, resulting in the quick elimination of therapeutic genes before they can produce their desired effects (8). Scientists are currently investigating methods to bypass this immune response by altering the composition of therapeutic genes or creating immune-suppressing medications that can mitigate the immunological reaction (9). By tackling this obstacle, gene therapy could emerge as a feasible alternative for the treatment of malignant tumors.

Checkpoint inhibitors, a type of medication that activates the immune system to target cancer cells, have great potential in gene therapy for treating malignant tumors (10). These medications function by obstructing the receptors on cancerous cells that impede the immune response, so enabling the body’s immune system to identify and combat the tumor cells with more efficacy. Researchers want to augment the effectiveness of gene therapy and surmount the obstacle of immune response by integrating checkpoint inhibitors with gene therapy (11).

Prior to extensive clinical implementation, it is imperative to address the substantial concern regarding the safety of gene therapy. Gene therapy carries the inherent risk of undesirable effects, such as immunological reactions, inflammation, or unexpected gene expression, due to the introduction of foreign genetic material into the body (12, 13). Thorough pre-clinical and clinical trials are essential to guarantee the safety and effectiveness of gene therapy methods for malignant tumors. Regulatory bodies and ethical committees have a crucial function in overseeing and assessing the potential dangers and advantages of gene therapy, thereby guaranteeing the safety of patients.

Gene therapy for malignant tumors has significant potential, despite the difficulties and intricacies involved. The therapeutic strategy provided is focused and individualized, specifically addressing the genetic defects that contribute to the formation of tumors (14, 15). The potential advantages of gene therapy in the treatment of malignant tumors are much greater than the obstacles it faces, which include effectively delivering genes, targeting specific tumors, managing immune responses, and addressing safety issues.

Therefore, the treatment of cancerous tumors by gene therapy is a notable obstacle in the field of medicine, although it also offers great potential. To fully exploit the potential of gene therapy for malignant tumors, it is crucial to advance the development of efficient gene delivery methods, individualized treatment approaches, and appropriate safety precautions. Through ongoing study and progress in the field, gene therapy holds the promise to transform the treatment of cancerous tumors and enhance patient results.

References
4. Baban CK, Cronin M, O’Hanlon D, O’Sullivan GC,


