With the progress of neuroscience, there is a growing curiosity and conjecture surrounding neuro-WiFi and its potential influence on neurological diseases. The concept of neuro-WiFi, which entails wireless communication between neurons in the brain, has the potential to profoundly transform our comprehension of brain function and create novel opportunities for therapy. Nevertheless, like any revolutionary technology, there are apprehensions regarding potential targets for neurological illnesses. Wireless communication networks in the brain may create an avenue for malevolent individuals to exploit weaknesses and obtain unauthorized access to neural data. The utilization of neuro-WiFi generates apprehensions regarding privacy, security, and ethical implications. As thus, it is essential to establish strong controls and processes to assure its safe use, in order to optimize its advantages while avoiding any risks related to targeting neurological diseases.

Keywords: Neuro-WiFi; Wireless Neuronal Communication; Neurological Diseases; Regulations; New Conception

Science Insights, 2023 December 31; Vol. 43, No. 6, pp.1151-1153.
Although neuro-WiFi holds significant promise and offers promising benefits, we need to point out at this early stage that its implementation nevertheless carries potential hazards. A key issue is the susceptibility of wireless links to external risks. Similar to other wireless technologies, neuro-WiFi would be vulnerable to hacking and unlawful intrusion. Malicious entities have the capacity to disrupt the signals, influence the transfer of data, or even seize control of the neural network (2). These invasions may result in significant repercussions, such as impaired cognitive abilities, unauthorized manipulation of connected devices, or even the possibility of exerting control over one's mind.

Neuro-WiFi poses a notable risk of potential neurocognitive interference. The use of wireless communication in the brain may potentially disrupt the intricate electrical signals that are crucial for optimal brain performance. The signals may experience distortion or disruption, resulting in cognitive decline, decreased memory, or the initiation of neurological diseases. Due to the complex structure of the brain, any interruption or disturbance induced by external wireless connectivity could have extensive and unpredictable repercussions (3, 4).

Furthermore, the matter of privacy and data security emerges in relation to neuro-WiFi. Neuro-WiFi necessitates the gathering and transmission of huge quantities of personal data derived from individuals' brains. This gives rise to apprehensions regarding the unlawful gathering or utilization of this delicate information. In a society where data breaches and privacy infringements are already widespread, the implementation of neuro-WiFi introduces a further level of apprehension over the security and safeguarding of personal information.

Conversely, critics of neuro-WiFi contend that the hazards linked to the technology surpass its potential advantages. They claim that the implementation of wireless connectivity into the human brain may result in the commodification and commercialization of biological processes. This may lead to the exploitation of susceptible individuals, causing a disparity between those who have the financial means to access modern neurological technology and those who do not. Furthermore, there are concerns regarding the potential societal ramifications of brain interfaces that are allowed by wireless technology (5-7). These issues revolve around the apprehension of a growing reliance on technology and the gradual decline of face-to-face human interaction.

With the exception of these worries, it is important to emphasize that technology and scientific progress seldom occur without accompanying risks (8, 9). Society must carefully negotiate the potential drawbacks while fully embracing the possibilities and advantages that neuro-WiFi offers. Establishing strong security standards, allocating resources to research and development to address any vulnerabilities, and enforcing strict ethical principles are essential to reduce exploitation and safeguard individuals’ privacy (10, 11).

To sum, the utilization of neuro-WiFi has great potential in the domains of neurology and neuroscience. By facilitating wireless communication inside neural networks, it possesses the capacity to fundamentally improve our comprehension of the brain and revolutionize the management of neurological illnesses. Nevertheless, the implementation of WiFi networking in the human brain also raises legitimate issues regarding security, privacy, and potential negative impacts on cognitive functions. In order to guarantee the secure and morally sound deployment of neuro-WiFi, it is crucial to conscientiously tackle these challenges and provide suitable safeguards. In order to fully harness the promise of neuro-WiFi while ensuring the protection of human neurological health, it is essential to prioritize appropriate research, investment, and regulation.

References
8. National Academy of Sciences (US), National Academy of Engineering (US) and Institute of Medicine (US) Committee on Ensuring the Utility and In-

9. Callaghan CW. Surviving a technological future: Technological proliferation and modes of discovery. Futures 2018; 104:100-116. DOI: https://doi.org/10.1016/j.futures.2018.08.001

Received: November 16, 2023 | Revised: November 26, 2023 | Accepted: November 30, 2023