Non-Alcoholic Fatty Liver Disease and the Risk of Future Hepatocarcinoma

Arnd Scholten*

University of Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany

* All correspondence should be sent to: Dr. Arnd Scholten.
Author’s Contact: Arnd Scholten, Ph.D., M.B.A., E-mail: arndscholten@gmail.com
Funding: No funding source declared.
COI: The author declares no competing interest.
AI Declaration: The author affirms that artificial intelligence did not contribute to the process of preparing the work.

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver condition characterized by excess fat accumulation in the liver in the absence of significant alcohol consumption. While NAFLD itself is generally considered benign, it can progress to more severe forms such as non-alcoholic steatohepatitis, which can ultimately lead to liver cirrhosis and hepatocarcinoma, a type of liver cancer. The risk of developing hepatocarcinoma in individuals with NAFLD is considerably higher than in the general population. Factors such as obesity, diabetes, insulin resistance, and inflammation contribute to the development and progression of NAFLD and its subsequent transformation into hepatocarcinoma. Regular monitoring, lifestyle modifications, and timely treatment of co-existing conditions are crucial in mitigating the risk of hepatocarcinoma among patients with NAFLD. Further research into the underlying mechanisms linking NAFLD to hepatocarcinoma is essential for developing effective preventive strategies and treatments for this increasingly prevalent condition.

Keywords: Non-Alcoholic Fatty Liver Disease; Hepatocarcinoma; Liver Cirrhosis; Risk Factors; Preventive Strategies

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a pathological state distinguished by hepatic fat accumulation that does not originate from alcohol ingestion (1). Globally, its incidence is on the rise, predominantly attributable to lifestyle choices including inadequate nutrition and insufficient physical activity. Nonalcoholic steatohepatitis (NASH), a more severe form of NAFLD, may eventually develop into hepatocarcinoma, or cancer of the liver (2).

Early-stage NAFLD complications are uncommon, prompting the moniker “silent disease” to be applied to this condition (3). Nevertheless, as the illness advances, susceptible
individuals may manifest symptoms including lethargy, abdominal discomfort, and jaundice. NAFLD is typically diagnosed via imaging investigations, blood tests, and occasionally a liver biopsy. Weight loss, dietary modifications, and consistent physical activity are all components of the treatment regimen for NAFLD, which aims to decrease fat accumulation in the liver.

NASH is a more aggressive subtype of NAFLD, distinguished by hepatic cell injury and inflammation (4). An estimated twenty percent of those diagnosed with NAFLD will progress to NASH. NASH can progress to cirrhosis, a condition in which the liver becomes scarred and incapable of functioning normally if left untreated. Cirrhosis constitutes a significant risk factor for hepatocarcinoma, an incurable form of liver cancer characterized by an unfavorable prognosis.

Hepatocarcinoma is a primary hepatic malignancy characterized by the development of liver cells. Globally, it ranks among the primary contributors to cancer-related fatalities. Hepatocarcinoma risk factors consist of obesity, diabetes, hepatitis B and C infections, and alcohol consumption. Hepatocarcinoma is an exceptionally dangerous condition that poses a significant risk to patients with cirrhosis (5). An estimated 5% of those diagnosed with cirrhosis develop liver cancer annually.

In order to improve prognoses, early detection and treatment of hepatocarcinoma are vital. Hepatocarcinoma may be managed with targeted therapy, liver transplantation, chemotherapy, or surgery. In contrast, advanced stages of hepatocarcinoma frequently have a poor prognosis due to the disease’s limited treatment options and high recurrence rate.

Epidemiology of Non-Alcoholic Fatty Liver Disease

Globally, NAFLD has emerged as a substantial public health issue on account of its increasing prevalence and potential for enduring health consequences. Risk factors, prevalence, and the effects of NAFLD on communities and individuals have been illuminated epidemiologically (6).

Preliminary findings indicate that estimates place the potential prevalence of NAFLD at 25% of the worldwide populace, a figure that has risen consistently in recent decades (7). The increase in question has been ascribed to the escalating prevalence of obesity, sedentary behaviors, and inadequate dietary practices, all of which are recognized as risk factors in the progression of NAFLD. Moreover, specific demographic groups, including those diagnosed with type 2 diabetes or metabolic syndrome, face an elevated susceptibility to the development of NAFLD, thereby compounding the overall impact of this condition (8).

Furthermore, research has demonstrated that NAFLD can impact infants and adolescents in addition to adults (9). Concurrent with the rise in the prevalence of adolescent obesity, the incidence of NAFLD among young individuals has also increased. Long-term health outcomes may be adversely affected by this disease’s early onset, including an increased risk of developing type 2 diabetes and cardiovascular disease in maturity.

The association between NAFLD and other chronic health conditions, including cardiovascular disease and chronic kidney disease, has been underscored by epidemiological research (10).

It has been demonstrated that individuals with NAFLD are more susceptible to developing these comorbidities; this emphasizes the critical nature of early detection and intervention in order to halt the progression of the disease. In addition, there is evidence to suggest that the existence of NAFLD is correlated with a heightened mortality risk, specifically due to complications affecting the liver, including cirrhosis and liver cancer.

A study has revealed variations in the incidence of NAFLD across distinct racial and ethnic populations. A higher prevalence of NAFLD has been observed among individuals of Hispanic or Latino descent in comparison to other ethnic groups (11). The significance of addressing social determinants of health and employing targeted interventions to alleviate the burden of NAFLD in vulnerable populations is highlighted by these disparities.

Obesity, insulin resistance, and dyslipidemia are modifiable risk factors for NAFLD that have been identified. It has been shown that adopting a healthy diet, engaging in regular physical activity, and losing weight are all aspects of lifestyle modifications that improve liver health and decrease the risk of NAFLD progression (12). The significance of preventive measures and early intervention in the management of NAFLD is highlighted by these results.

The Link between NAFLD and Hepatocarcinoma

Pathophysiology of NAFLD Leading to Hepatocarcinoma

The etiology of hepatocarcinoma resulting from NAFLD is intricate and multifactorial. Steatosis, or the accumulation of fat in the liver, is the initial pathological characteristic of NAFLD. NASH may result from this. Subsequent to chronic inflammation and hepatocyte damage, fibrosis, cirrhosis, and hepatocarcinoma may develop.

Alongside inflammation and hepatocyte injury, the development of hepatocarcinoma in patients with NAFLD is influenced by a number of other factors. Significant roles are played by insulin resistance, oxidative stress, and changes in lipid metabolism in the pathophysiology of NAFLD and the development of hepatocarcinoma (13). Increased hepatic lipid accumulation, inflammation, and fibrosis are all associated with an elevated risk of hepatocarcinoma and can result from insulin resistance.

Moreover, hepatocarcinogenesis may be exacerbated by oxidative stress, which arises from a disparity between the body’s antioxidant defenses and the production of reactive oxygen species (14). DNA damage, inflammation, and cell proliferation are all known to contribute to the development of hepatocarcinoma in patients with NAFLD when oxidative stress is present.

In the pathophysiology of NAFLD and hepatocarcinoma, modifications in lipid metabolism, such as dysregulation of lipid synthesis, transport, and storage, are also critical. NAFLD patients frequently exhibit dyslipidemia, which is distinguished by heightened concentrations of triglycerides and cholesterol (15). This condition is correlated with an elevated likelihood of developing hepatocarcinoma. The accumulation of toxic lipid in-
termed, which can induce cellular stress and promote the development of hepatocarcinoma, can result from aberrant lipid metabolism.

Therefore, the etiology of hepatocarcinoma resulting from NAFLD is intricate and multifactorial, involving inflammation, insulin resistance, oxidative stress, and modifications in lipid metabolism, among others. To develop effective strategies for the prevention and treatment of liver cancer in patients with NAFLD, it is critical to comprehend the underlying mechanisms that contribute to the progression of NAFLD to hepatocarcinoma. To enhance early detection and management of this dire complication, additional research is required to elucidate the precise pathways and mechanisms that contribute to the development of hepatocarcinoma in patients with NAFLD.

Epidemiological Evidence of the Association

There is substantial epidemiological evidence linking NAFLD to an elevated risk of developing hepatocarcinoma. Studies determined that patients with NAFLD had a substantially increased risk of developing hepatocarcinoma in comparison to those without NAFLD. Patients who had NASH had an especially high risk (16, 17).

Further substantial cohort studies have presented persuasive evidence supporting the association between NAFLD and hepatocarcinoma. Seko et al. observed more than 11,000 patients with NAFLD for a median of 5.3 years and discovered that those with NAFLD had a substantially higher incidence of hepatocarcinoma than those without NAFLD (18). Patients with advanced fibrosis and cirrhosis had an even greater susceptibility to hepatocarcinoma, underscoring the criticality of early detection and intervention for NAFLD patients.

Complex and multifactorial pathogenic mechanisms underlie the association between NAFLD and hepatocarcinoma. Hypoglycemia, insulin resistance, chronic inflammation, oxidative stress, and dysregulated lipid metabolism have all been linked to the development of hepatocarcinoma in patients with NAFLD (19). In addition, as cirrhosis is a well-established risk factor for liver cancer, its presence in patients with NAFLD substantially elevates the likelihood of developing hepatocarcinoma.

In addition to biological mechanisms, a number of clinical risk factors that may increase the susceptibility of patients with NAFLD to hepatocarcinoma. The aforementioned factors comprise metabolic syndrome, obesity, diabetes, advanced age, and masculine gender. It is imperative to closely monitor patients with NAFLD who possess these risk factors for the development of hepatocarcinoma, as early detection and treatment can substantially enhance prognoses (20).

The expanding epidemiological evidence connecting NAFLD and hepatocarcinoma has significant public health policy and clinical practice ramifications. In order to detect hepatocarcinoma at an early stage, when curative treatment options are still available, healthcare providers should be aware of the increased risk of hepatocarcinoma in patients with NAFLD, especially those with NASH or cirrhosis, and should implement routine surveillance strategies, such as ultrasound and alpha-fetoprotein testing (21, 22).

Preventing the development of hepatocarcinoma in high-risk populations also requires public health initiatives that seek to reduce the prevalence of NAFLD and its associated metabolic complications. These initiatives should promote healthy lifestyle choices and weight management, among other things. By mitigating the impact of hepatocarcinoma in patients with NAFLD and advocating for early detection and treatment, it is possible to enhance the overall prognosis for these individuals and alleviate the burden of hepatocarcinoma. To better comprehend the intricate relationship between NAFLD and hepatocarcinoma and to develop more effective prevention and management strategies, additional research is required.

Risk Factors for Hepatocarcinoma in NAFLD Patients

Genetic Predisposition

The development of hepatocarcinoma in an individual with NAFLD may be influenced by genetic factors. In NAFLD patients, numerous genetic variations have been identified as risk factors for hepatocarcinoma. The patatin-like phospholipase domain containing 3 (PNPLA3) gene is an example of such a gene; it has been linked to an elevated risk of developing NAFLD and hepatocarcinoma (23). Research has indicated that individuals who possess the PNPLA3 variant are at an increased risk of developing fatty liver disease and liver cancer in comparison to those who do not bear the variant (24).

The transmembrane 6 superfamily member 2 (TM6SF2) gene is additionally associated with the development of hepatocarcinoma in patients with NAFLD (25). This gene variant has been associated with an increased risk of developing NAFLD, NASH progression, and hepatocarcinoma. Environmental factors, including obesity, diabetes, and lifestyle choices, may interact with these genetic predispositions to increase the risk of hepatocarcinoma development in NAFLD patients.

Other genetic variants have been linked to an increased risk of developing hepatocarcinoma in NAFLD patients, in addition to PNPLA3 and TM6SF2. It has been discovered that genetic variations in genes associated with lipid metabolism, insulin signaling, and inflammation contribute to the development of hepatocarcinoma in NAFLD (26). Due to the fact that these genetic predispositions can influence disease progression and treatment response, genetic factors must be considered when managing NAFLD patients.

By comprehending the genetic susceptibility to hepatocarcinoma among patients with NAFLD, it becomes possible to identify those who are at an increased risk and customize treatment approaches accordingly. In the context of NAFLD, genetic testing can assist in the identification of patients who possess particular genetic variants that are linked to an elevated risk of developing hepatocarcinoma (27, 28). By utilizing this data, personalized treatment plans and interventions can be developed with the aim of mitigating the development of hepatocarcinoma and enhancing patient outcomes.

Therefore, in NAFLD patients, genetic predisposition significantly influences the development of hepatocarcinoma. The presence of genetic variations that regulate lipid metabolism, insulin signaling, and inflammation has been associated with an elevated risk of developing NASH and hepatocarcinoma from
NAFLD. By identifying these genetic predispositions, interventions and treatment strategies for high-risk individuals can be tailored. To develop targeted therapies for this high-risk population and gain a greater understanding of the mechanisms underlying disease progression, additional research into the genetic determinants of hepatocarcinoma in NAFLD patients is required.

Metabolic Syndrome and Insulin Resistance
Metabolic syndrome enhances the likelihood of developing NAFLD by promoting insulin resistance and the buildup of fat in the liver. Insulin resistance is a crucial element in the formation of metabolic syndrome and contributes to the advancement from NAFLD to hepatocarcinoma.

The association between metabolic syndrome and hepatocarcinoma in individuals with NAFLD underscores the significance of effectively controlling and treating these illnesses in order to mitigate the likelihood of developing liver cancer (29). Engaging in lifestyle modifications, such as maintaining an optimal body weight, adhering to a well-balanced dietary pattern, and engaging in regular physical activity, can effectively mitigate the likelihood of developing metabolic syndrome and NAFLD. For patients who have already been diagnosed with these problems, it is crucial to have appropriate medical treatment and regular monitoring in order to prevent the development of hepatocarcinoma.

Timely identification and management of metabolic syndrome and NAFLD can effectively mitigate the likelihood of developing hepatocarcinoma. Regular screenings, such as liver function tests and imaging investigations, can aid in the early detection of liver damage and cancer, maximizing the effectiveness of treatment (30). Close surveillance by healthcare professionals is essential for patients with metabolic syndrome and NAFLD to rapidly identify any alterations in liver function and intervene accordingly.

Prevention and Management of Hepatocarcinoma in NAFLD Patients
Lifestyle Interventions
Weight management is a crucial lifestyle intervention for hepatocarcinoma in patients with NAFLD (31). Obesity, a significant risk factor for both NAFLD and hepatocarcinoma, can be mitigated through weight loss, which can also prevent the deposition of fat in the liver and thus lower the likelihood of developing liver cancer. In addition to being crucial for weight loss and maintenance, a healthy diet and consistent exercise can also contribute to an improvement in liver health.

Although NAFLD is not associated with alcohol consumption, however, alcohol reduction is another crucial lifestyle intervention for hepatocarcinoma in patients with NAFLD. Alcohol consumption should be restricted or completely avoided by patients with NAFLD in order to mitigate the risk of developing hepatocarcinoma, as alcohol is a recognized risk factor for liver cancer (32). Alcohol consumption guidelines may be prescribed by healthcare providers in accordance with an individual’s health condition and risk factors.

In addition, regular physical activity can help prevent hepatocarcinoma in patients with NAFLD. Engaging in physical activity can facilitate weight loss, reduce inflammation, and enhance liver function—all of which are protective factors against liver cancer (33). For the greatest health benefits, patients with NAFLD should strive to integrate resistance training and aerobic exercise into their exercise regimen.

A healthy diet is an additional crucial lifestyle intervention for NAFLD patients with hepatocarcinoma (34). In addition to reducing the risk of liver cancer, a diet abundant in fruits, vegetables, whole cereals, and lean proteins can assist in enhancing liver function. Additionally, processed foods, sugary beverages, and high-fat foods should be restricted in the diets of patients with NAFLD, as they can worsen liver injury and increase the risk of developing hepatocarcinoma.

Pharmacological Approaches
Chemopreventive agents are one of the primary pharmacological approaches utilized in the treatment of hepatocarcinoma in patients with NAFLD (35). By selectively inhibiting pathways implicated in the progression and development of liver cancer, including inflammation, oxidative stress, and cell proliferation, these agents achieve their effects. Hepatocarcinoma in patients with NAFLD is frequently treated with chemopreventive agents such as statins, metformin, and vitamin E.

In patients with NAFLD, statins have shown promise in reducing the risk of hepatocarcinoma. The ability of statins to reduce inflammation in the liver and inhibit the proliferation of liver cancer cells; therefore, they may be an effective treatment option for hepatocarcinoma in patients with NAFLD (36, 37).

Metformin has demonstrated promise as a chemopreventive agent against hepatocarcinoma in patients with NAFLD (38). By inhibiting liver inflammation and targeting the insulin signaling pathway, metformin can potentially protect patients with NAFLD from developing liver cancer.

Vitamin E, a potent antioxidant, has also been the subject of research regarding its potential advantages in the treatment of hepatocarcinoma among patients with NAFLD (39). An important contributor to the development of liver cancer, oxidative stress in the liver can be mitigated with the aid of vitamin E. Supplementation with vitamin E has been shown to reduce the risk of hepatocarcinoma in patients with NAFLD, making it a viable option for those who are at risk of developing this condition.

In addition to chemopreventive agents, targeted therapies (40) and immunotherapies (41) are additional pharmacological approaches utilized in the management of hepatocarcinoma in patients with NAFLD. Targeted therapies function by selectively targeting the pathways implicated in the progression and development of liver cancer. Conversely, immunotherapies enhance the capacity of the immune system to identify and eliminate malignant cells.

A targeted therapy employed in the management of hepatocarcinoma in patients with NAFLD is sorafenib, a pharmaceutical agent that selectively targets molecules implicated in the proliferation and metastasis of hepatocellular carcinoma (42). Sorafenib is frequently prescribed for the treatment of advanced hepatocarcinoma due to its demonstrated ability to increase patient survival rates.
In patients with NAFLD, immunotherapies, including checkpoint inhibitors, have also demonstrated potential in the treatment of hepatocarcinoma (43). These medications function by releasing the immune system’s inhibitory controls, thereby enhancing its ability to identify and eliminate cancer cells. It has been demonstrated that checkpoint inhibitors increase survival rates in patients with advanced liver cancer; therefore, they may represent a viable treatment option for patients with hepatocarcinoma in NAFLD.

In general, the pharmacological strategies employed to treat hepatocarcinoma in patients with NAFLD are heterogeneous and undergo constant development. Healthcare providers may choose from a diverse range of options, including immunotherapies, targeted therapies, chemopreventive agents, and targeted therapies, when formulating treatment plans for patients afflicted with this condition. Healthcare providers can guarantee that their patients who have hepatocarcinoma in the context of NAFLD receive the most effective and individualized care possible by remaining current on the most recent research and developments in this area.

Emerging Treatments for NAFLD-Related Hepatocarcinoma
Nuclear receptors belonging to the peroxisome proliferator-activated receptor (PPAR) family represent a promising therapeutic target for hepatocarcinoma associated with NAFLD (44, 45). Dysregulation of PPARs, which is crucial regulators of hepatic lipid metabolism and inflammation, has been linked to the development of NAFLD. In animal models of NAFLD, PPAR activation ameliorates hepatic fibrosis, fibrosis, inflammation, and steatosis; it may also have anticancer properties in hepatocarcinoma (46).

The gut-liver axis and its bidirectional communication between the liver and gut microbiota are additional potential therapeutic targets for hepatocarcinoma associated with NAFLD (47). An imbalance in the intestinal microbiota, or dysbiosis, has been linked to the formation of NAFLD and hepatocarcinoma. A novel therapeutic approach for NAFLD-related hepatocarcinoma could involve the administration of probiotics, prebiotics, or fecal microbiota transplantation, which target the gastrointestinal microbiota.

Other potential therapeutic targets for hepatocarcinoma associated with NAFLD encompass pathways implicated in fibrogenesis, inflammation, insulin resistance, oxidative stress, and the gut-liver axis. Targeting the Nrf2 antioxidant pathway, for instance, could potentially reduce hepatic inflammation and oxidative stress, whereas targeting the insulin signaling pathway could potentially enhance insulin sensitivity and diminish the accumulation of adipose tissue (48).

An approach that targets the inflammasome, a crucial regulator of hepatic inflammation, could potentially mitigate hepatic fibrosis and inflammation in NAFLD. The investigation of inhibitors of the inflammasome, including caspase-1 inhibitors and NLRP3 inhibitors, is presently underway as a potential therapeutic approach for hepatocarcinoma associated with NAFLD (49).

An additional prospective therapeutic target for hepatocarcinoma associated with NAFLD is the AMP-activated protein kinase (AMPK) pathway, a critical regulator of hepatic energy metabolism and cell proliferation (50). In animal models of NAFLD, AMPK activation has been shown to decrease hepatic fibrosis, inflammation, and steatosis (51); it may also have anticancer properties in hepatocarcinoma.

Targeting the mTOR pathway, which is a critical regulator of cellular metabolism and growth, may also provide an innovative therapeutic strategy for hepatocarcinoma associated with NAFLD (52). For the treatment of hepatocarcinoma, inhibitors of the mTOR pathway, such as everolimus and rapamycin, have been shown in preclinical studies to inhibit the growth of liver tumors and are presently being evaluated in clinical trials (53).

In addition, therapeutically targeting the epigenetic dysregulation in the liver may represent a viable strategy for managing hepatocarcinoma associated with NAFLD (54). In the pathogenesis of NAFLD and hepatocarcinoma, epigenetic modifications, including DNA methylation, histone acetylation, and microRNA dysregulation, are crucial (55). Specific inhibitors that target these epigenetic modifications may aid in the prevention or treatment of NAFLD-associated hepatocarcinoma.

Conclusion
NAFLD is an increasingly prevalent public health issue distinguished by the buildup of adipose tissue in the liver in the absence of excessive alcohol intake. NAFLD is associated with an increased risk of developing hepatocarcinoma, the most prevalent type of liver cancer. The chronic inflammation and liver injury that frequently accompany NAFLD, resulting in fibrosis and cirrhosis, which are recognized risk factors for hepatocarcinoma, are responsible for this association. Additionally, metabolic abnormalities such as insulin resistance and dyslipidemia may be present in individuals with NAFLD, which increases their susceptibility to the development of hepatocarcinoma. Detection and treatment of NAFLD at an early stage are critical for averting the development of advanced liver disease and, ultimately, decreasing the risk of hepatocarcinoma in those affected.

References

Received: February 22, 2024 | Revised: April 05, 2024 | Accepted: April 07, 2024