Is It Possible to Precisely Monitor Thyroid Function as It Transitions from Hashimoto’s to Grave’s Diseases?

Se Jun Choi
Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
* All correspondence should be sent to: Dr. Se Jun Choi
Author’s Contact: Dr. Se Jun Choi, M.D., E-mail: sjchoi1@gmail.com
DOI: https://doi.org/10.15354/si.24.c0195
Funding: No funding source declared.
COI: The author declares no competing interest.
AI Declaration: The author affirms that artificial intelligence did not contribute to the process of preparing the work.

Thyroid function needs to be carefully assessed during the shift from Hashimoto’s to Graves’ disease, using important markers such as thyroid stimulating hormone (TSH) levels, thyroid antibodies, and ultrasound imaging. TSH levels play a crucial role in the diagnosis and treatment of thyroid disorders, since increased levels indicate an underactive thyroid (Hashimoto’s) and decreased levels indicate an overactive thyroid (Graves’). Furthermore, the identification of certain antibodies such as anti-thyroglobulin and anti-thyroperoxidase can aid in distinguishing between the two autoimmune disorders. Ultrasound imaging provides further information by visually representing the dimensions and composition of the thyroid gland, aiding in the early identification of nodules or enlargement linked to both pathological conditions. Consistent surveillance and cooperation among healthcare practitioners are essential for efficiently handling the shift from Hashimoto’s to Graves’ disease, guaranteeing the best possible results for patients.

Keywords: Hashimoto’s Thyroiditis; Grave’s Disease; Pathological Shift; Monitor; Diagnosis

Science Insights, 2024 June 30; Vol. 44, No. 6, pp.1393-1395.

© 2024 Insights Publisher. All rights reserved.
Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed by the Insights Publisher.

MONITORING thyroid function is crucial in the therapy of autoimmune thyroid disorders like Hashimoto’s disease and Graves’ disease. Hashimoto’s thyroiditis is generally associated with hypothyroidism (1), while Graves’ disease is typically associated with hyperthyroidism (2). These two disorders reflect the extremes of thyroid malfunction. It is crucial to carefully observe the thyroid function as the disease advances, as certain people may experience a transition from Hashimoto’s disease to Graves’ disease (3).

Hashimoto’s disease is an autoimmune disorder characterized by the immune system’s erroneous targeting and subsequent assault on the thyroid gland, resulting in inflammation and the deterioration of thyroid tissue. This leads to a reduction in the production of thyroid hormones, resulting in symptoms such as tiredness, increased body weight, and reduced tolerance to cold temperatures (1). Individuals diagnosed with Hashimoto’s
disease commonly exhibit heightened levels of thyroid-stimulating hormone (TSH) and diminished levels of thyroid hormones, including triiodothyronine (T3) and thyroxine (T4). Regular monitoring of thyroid function in these patients entails conducting periodic tests to evaluate the levels of TSH, T3, and T4 in order to assess the production of thyroid hormones (4).

As Hashimoto’s disease advances, certain patients may undergo a transition to Graves’ disease, an additional autoimmune condition characterized by the immune system’s stimulation of the thyroid gland to overproduce thyroid hormones. As a consequence, individuals may have symptoms such as decreased body mass, irregular heartbeats, and reduced tolerance to high temperatures. Individuals diagnosed with Graves’ disease generally exhibit decreased levels of TSH and increased levels of T3 and T4 (2). The transition from Hashimoto’s to Graves’ disease is infrequent, although it can happen in certain individuals, particularly those with a familial predisposition to autoimmune thyroid disorders (5).

Monitoring thyroid function in patients with autoimmune thyroid diseases is crucial due to multiple reasons. First, regular testing enables healthcare experts to evaluate the advancement of the condition and make appropriate adjustments to the treatment. Patients diagnosed with Hashimoto’s disease may necessitate thyroid hormone replacement therapy to effectively manage hypothyroidism, whereas individuals with Graves’ disease may require drugs to inhibit thyroid hormone production. Furthermore, the surveillance of thyroid function aids in identifying any alterations in the thyroid gland, such as the formation of nodules or goiter, which could suggest a deterioration of the condition (6).

It is essential to closely monitor the thyroid function of patients diagnosed with Hashimoto’s disease to detect any indications of conversion to Graves’ disease. Certain individuals may experience signs of hyperthyroidism, such as inexplicable weight loss or anxiety, which may suggest a progression towards Graves’ disease (7). When faced with such situations, healthcare experts may suggest further examinations, such as thyroid ultrasound or thyroid uptake scan, to verify the diagnosis and provide the most suitable treatment approach. The transition from Hashimoto’s to Graves’ disease is believed to be associated with the underlying autoimmune mechanism that impacts the thyroid gland. Graves’ disease can arise when the immune system transitions from targeting thyroid tissue to promoting the synthesis of thyroid hormones in certain individuals (8). Genetic factors, environmental triggers, and hormonal changes can contribute to the development of autoimmune thyroid disorders and the transition between different forms of thyroid dysfunction.

Thyroid illnesses like Hashimoto’s and Grave’s disease may have similar symptoms, but they need distinct approaches for treatment. Therefore, it is essential to monitor thyroid function using antibodies to ensure an accurate diagnosis and determine the most suitable treatment. Hashimoto’s disease is characterized by the development of thyroid peroxidase (TPO) antibodies, which signal an autoimmune assault on the thyroid gland, leading to hypothyroidism (9). In contrast, the existence of thyroid stimulating immunoglobulins (TSI) in Grave’s disease indicates that the thyroid gland is being stimulated by autoantibodies, resulting in hyperthyroidism (10). Consistent monitoring of these antibody levels enables healthcare providers to assess the advancement of the disease and modify treatment as necessary. Healthcare professionals can optimize management and prevent potential problems of Hashimoto’s and Grave’s disease by evaluating antibody levels in conjunction with thyroid function tests such as TSH, free T4, and T3 levels.

In patients transitioning from Hashimoto’s disease to Graves’ disease, ultrasound surveillance of thyroid function is essential, as it offers valuable insights into the anatomical changes that are occurring within the thyroid gland. Using ultrasound technology, healthcare professionals can observe changes in the size, shape, and vascularity of the thyroid, which may suggest the progression or resolution of autoimmune thyroid disorders (11). In addition, ultrasonography can assist in the identification of nodules or masses in the thyroid gland, which may be indicative of malignancy or other complications (12). Consequently, the management and treatment planning of patients with autoimmune thyroid diseases are significantly influenced by the regular surveillance of ultrasounds, which enables the provision of timely intervention and the enhancement of patient outcomes (13, 14). In order to ensure that their patients transitioning between Hashimoto’s and Graves’ diseases receive the best possible treatment, healthcare providers must remain informed about the most recent developments in ultrasound technology and its applications in thyroid-related health.

In sum, as the thyroid progresses from Hashimoto’s disease to Grave’s disease, the task of monitoring its function becomes ever intricate and demanding. Hashimoto’s illness is distinguished by hypothyroidism, whereas Grave’s disease is defined by hyperthyroidism. To accurately monitor this transition, a comprehensive knowledge of the varying amounts of thyroid hormones, particularly T3 and T4, and the existence of autoimmune antibodies that affect thyroid function is necessary. TSH levels are commonly used to assess thyroid function. However, in the situation where Hashimoto’s disease progresses to Grave’s disease, TSH levels may not provide an adequate representation of the chemical imbalance happening in the thyroid gland. Hence, it is crucial to conduct supplementary examinations, including the measurement of free T3 and T4 levels, as well as the monitoring of antibody levels against TPO and thyroglobulin, in order to accurately monitor and manage this transitional phase in thyroid function. To improve the precision of monitoring the changes in the thyroid gland during this crucial period, it is beneficial to work together with endocrinologists and employ modern methods such as ultrasound imaging.
References

12. Maia FF, Zantut-Wittmann DE. Thyroid nodule management: Clinical, ultrasound and cytopathological parameters for predicting malignancy. Clinics (Sao Paulo) 2012; 67(8):945-954. DOI: https://doi.org/10.6061/clinics/2012(08)15

Received: May 21, 2024 | Revised: June 02, 2024 | Accepted: June 04, 2024