On the Molecular and Immunological Mechanisms of the Transition from Hashimoto’s Thyroiditis to Grave’s Disease

Camila Burch, Lanell Blakley

University of Sydney, Sydney, New South Wales 2050, Australia

*: All correspondence should be sent to: Dr. Lanell Blakley

Author’s Contact: Dr. Camila Burch, M.D., E-mail: ctburch@gmail.com; Dr. Lanell Blakley, M.D., Ph.D., E-mail: lanell.blakley@outlook.com

DOI: https://doi.org/10.15354/si.24.re1016

Funding: No funding source declared.

COI: The authors declare no competing interest.

AI Declaration: The authors affirm that artificial intelligence did not contribute to the process of preparing the work.

Autoimmune thyroid disorders, including Hashimoto’s thyroiditis and Grave’s disease, represent complex conditions characterized by dysregulation of the immune system targeting the thyroid gland. Understanding the molecular and immunological mechanisms underlying the transition from Hashimoto’s thyroiditis to Grave’s disease is essential for unraveling the pathophysiology of these interconnected autoimmune conditions. We propose insights into the intricate interplay of genetic factors, immune responses, and hormonal pathways that drive the progression from hypothyroidism to hyperthyroidism, shedding light on new perspectives for diagnosis, management, and future research directions in autoimmune thyroid disorders.

Keywords: Hashimoto’s Disease; Grave’s Disease; Antibody Shift; Immune Bystander; Genetic Pre-disposition; Environment Risks

© 2024 Insights Publisher. All rights reserved.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed by the Insights Publisher.

Introduction

HASHIMOTO’S thyroiditis and Graves’ disease are both autoimmune thyroid disorders that can result in abnormalities in thyroid function. However, they are at opposite ends of the spectrum in terms of thyroid function. Graves’ disease is distinguished by hyperthyroidism, or an overactive thyroid, while Hashimoto’s is associated with hypothyroidism, or an underactive thyroid (1). A limited number of cases have been documented, but the transition from Hashimoto’s to Graves’ disease is a rare occurrence. The effective management and treatment of patients with autoimmune thyroid disorders are contingent upon an understanding of the mechanisms that underlie this transition.

One potential mechanism is the “thyroid antibody shift.” Hashimoto’s thyroiditis is characterized by the production of antibodies by the body’s immune system, which results in inflammation and eventual destruction of the thyroid gland (2). Graves’ disease is an example of a condition in which these antibodies can transition from targeting the thyroid gland to stimulating it. Genetic factors, environmental factors, or other unknown triggers may induce this change in antibody response.

An additional potential mechanism is the concept of “bystander activation.” In autoimmune diseases such as Graves’ and Hashimoto’s, activated immune cells can release inflammatory
mediators that can inadvertently activate adjacent immune cells (3). This bystander activation has the potential to initiate a series of immune responses that may ultimately contribute to the progression from one autoimmune disease to another. This mechanism may be especially pertinent in situations where patients exhibit overlapping symptoms or laboratory findings of both Hashimoto’s and Graves’ disease.

Furthermore, it has been proposed that the transition from Hashimoto’s to Graves’ may be influenced by alterations in the cytokine-dominant microenvironment of the thyroid gland (4). For instance, the development of Graves’ disease may be facilitated by changes in the levels of specific cytokines or other signaling molecules within the thyroid gland. The transition between these two autoimmune diseases may be influenced by this change in the local immune response within the thyroid gland.

Therefore, the transformation from Hashimoto’s to Graves’ disease is a rare and intricate event that is influenced by a variety of mechanisms. It is vital to comprehend these mechanisms in order to facilitate the early detection and management of patients who are at risk of transitioning between autoimmune thyroid disorders. Additional research is required to investigate the underlying mechanisms and identify potential targets for the treatment and prevention of the transition from Hashimoto’s to Graves’ disease.

“Thyroid Antibody Shift” in the Transition from Hashimoto’s to Grave’s

The thyroid gland is essential for the regulation of the body’s metabolism, energy levels, and overall health. Thyroid disorders, including Graves’ disease and Hashimoto’s disease, can result in substantial fluctuations in thyroid hormone levels, which can result in a variety of health complications and symptoms. The thyroid antibody shift, also known as the thyroid Ab shift, is an intriguing phenomenon that may manifest in patients transitioning from Hashimoto’s disease to Graves’ disease (5).

Hashimoto’s disease is an autoimmune disorder in which the thyroid gland is mistakenly attacked by the body’s immune system, resulting in decreased thyroid hormone secretion and inflammation. Thyroid peroxidase antibodies (TPOAbs) and thyroglobulin antibodies (TgAbs) are frequently elevated in the blood of patients with Hashimoto’s disease (6). These antibodies are crucial in the diagnosis of Hashimoto’s disease and are linked to the destruction of thyroid tissue.

Some patients may develop symptoms of hyperthyroidism as Hashimoto’s disease advances, suggesting a transition to Graves’ disease. Graves’ disease is an additional autoimmune disorder in which the immune system inadvertently targets the thyroid gland, resulting in an excessive production of thyroid hormones. As patients transition from Hashimoto’s to Graves’, there is frequently a change in thyroid antibodies. This shift is characterized by a decrease in TPOAb and TgAb levels and an increase in thyrotropin receptor antibodies (TRAbs) and thyroid stimulating immunoglobulins (TSI) (7).

The underlying immune response is believed to be the cause of the thyroid antibody shift that occurs during the transition from Hashimoto’s to Graves’ disease. The primary target of the immune system in Hashimoto’s disease is the thyroid gland tissue, which results in hypothyroidism and thyroid destruction. Some patients may develop antibodies that stimulate the thyroid gland as the immune response evolves, leading to increased production of thyroid hormones and hyperthyroidism symptoms that are characteristic of Graves’ disease.

In patients transitioning from Hashimoto’s to Graves’ disease, the thyroid antibody shift can be clinically significant, as it may indicate changes in disease activity and treatment response (8). Clinicians can evaluate the progression of the disease and adjust treatment strategies by monitoring thyroid antibody levels, thyroid hormone levels, and clinical symptoms. For instance, patients with elevated TSI and TRAb levels may benefit from antithyroid medications or radioactive iodine treatment to reduce thyroid hormone production.

In certain instances, the thyroid antibody shift may occur swiftly, resulting in the sudden onset of hyperthyroidism in previously hypothyroid patients with Hashimoto’s disease. In order to differentiate between Hashitoxicosis and Graves’ disease, it is necessary to closely monitor thyroid hormone and thyroid antibody levels, a condition known as Hashitoxicosis, which can be difficult to diagnose and manage (9).

The complex and dynamic character of autoimmune thyroid disorders is underscored by the thyroid antibody shift that occurs during the transition from Hashimoto’s to Graves’ disease. Researchers can enhance patient outcomes and develop novel treatment strategies by comprehending the underlying immunological mechanisms that drive these changes. In addition, the identification of patients who are at risk of transitioning from Hashimoto’s to Graves’ disease through the surveillance of thyroid antibody levels may result in earlier intervention and improved management of thyroid disorders (10).

In sum, the thyroid antibody shift that occurs during the transition from Hashimoto’s to Graves’ disease is a significant phenomenon that is indicative of alterations in the underlying immune response and disease activity. Clinicians can evaluate the progression of the disease and customize treatment strategies for patients with autoimmune thyroid disorders by monitoring thyroid antibody levels, thyroid hormone levels, and clinical symptoms. Additional research is required to gain a more comprehensive understanding of the mechanisms that are responsible for the thyroid antibody shift and its implications for patient care.

“Bystander Activation” in the Transition from Hashimoto’s to Grave’s

Bystander activation is a term employed in immunology to characterize the phenomenon in which nearby cells become activated during an immune response despite not being directly involved in the initial immune response (11). This concept is essential in the transition from Hashimoto’s thyroiditis to Graves’ disease, two autoimmune disorders that affect the thyroid gland.

Hashimoto’s thyroiditis is a condition in which the immune system inadvertently targets the thyroid gland, resulting in inflammation and ultimately hypothyroidism. In this autoimmune disorder, bystander activation is a phenomenon in which immune cells in the vicinity of the thyroid gland become activated in response to the ongoing immune attack. The inflammation and tissue injury in the thyroid gland are further exacerbated by the release of cytokines and other signaling molecules by
these activated immune cells.

The immune response in Hashimoto’s thyroiditis may eventually result in the development of Graves’ disease as it persists. Graves’ disease is characterized by the production of antibodies by the immune system, which induces the thyroid gland to generate excessive amounts of thyroid hormones, leading to hyperthyroidism. Bystander activation is essential in this transition, as the ongoing inflammation and immune activity in the thyroid gland can induce the production of these stimulating antibodies.

The cross-reactivity of immune cells and antibodies is one of the primary mechanisms that underlie bystander activation during the transition from Hashimoto’s to Graves’ disease (12). In autoimmune disorders, immune cells and antibodies that were initially designed to target a specific target may mistakenly identify and attack other similar targets. Immune cells that initially target specific thyroid antigens in Hashimoto’s thyroiditis may also recognize and attack distinct antigens in Graves’ disease in the case of thyroid autoimmunity. This can result in bystander activation and the development of hyperthyroidism.

Genetic factors can also influence bystander activation during the transition from Hashimoto’s to Graves’ disease (13, 14). Individuals may be predisposed to autoimmune thyroid disorders, and their severity and progression may be influenced by specific genetic variations. The immune response and the function of immune cells and antibodies can be influenced by genetic factors, resulting in an exacerbation of thyroid autoimmunity and higher bystander activation.

Environmental stimuli may also contribute to bystander activation during the transition from Hashimoto’s to Graves’ disease, in addition to genetic factors (15). The development and progression of autoimmune thyroid disorders have been linked to environmental factors, including stress, infection, and iodine intake. These factors can further drive the transition from hypothyroidism to hyperthyroidism by modulating the immune response and contributing to bystander activation in the thyroid gland.

Therapeutic strategies that target bystander activation in autoimmune thyroid disorders have the potential to enhance outcomes and decrease the risk of disease progression (16). Researchers may be able to prevent the development of hyperthyroidism in individuals with Hashimoto’s thyroiditis by targeting immune cells and molecules involved in bystander activation, thereby modulating the immune response. These innovative methods have the potential to transform the treatment of autoimmune thyroid disorders and enhance the quality of life for those who are affected.

Therefore, the transition from Hashimoto’s to Graves’ disease is significantly influenced by bystander activation. The progression from hypothyroidism to hyperthyroidism is facilitated by bystander activation, which is influenced by the interconnectedness of the immune system, genetic factors, and environmental stimuli. Through an understanding of the mechanisms that underlie bystander activation in autoimmune thyroid disorders, researchers can create targeted therapeutic strategies that will regulate the immune response and prevent the development of hyperthyroidism. It is imperative to conduct additional research in this field in order to enhance our comprehension of autoimmune thyroid disorders and the outcomes of treatment for those who are affected.

“Cytokine-Dominant Microenvironment” in the Transition from Hashimoto’s to Grave’s

A transformation in the cytokine-dominated microenvironment within the thyroid gland is the defining characteristic of the transition from Hashimoto’s thyroiditis to Graves’ disease. Autoimmune devastation of the thyroid tissue is the result of an abundance of pro-inflammatory cytokines, including interferon-gamma and tumor necrosis factor-alpha, in Hashimoto’s disease (17). There is a transition to Th2-type cytokines, particularly interleukins (IL)-4 and IL-10, as the disease advances toward Graves’. These cytokines stimulate B-cell activation and antibody production against thyroid-stimulating hormone receptors. The hyperthyroid state observed in Graves’ disease is significantly influenced by this alteration in cytokine profile (18). Understanding these changes in the microenvironment can offer valuable insights into the progression of the disease and potentially direct therapeutic interventions that are designed to effectively regulate cytokine responses in order to manage autoimmune thyroid disorders.

Hashimoto’s thyroiditis is an autoimmune disorder that is distinguished by the chronic inflammation of the thyroid gland, which leads to hypothyroidism. The immune system attacks the thyroid tissue, resulting in the production of thyroid hormones and the destruction of thyroid cells. Hashimoto’s thyroiditis is characterized by elevated levels of cytokines, including tumor necrosis factor-alpha (TNF-alpha) and IL-6. These cytokines are known to induce an inflammatory response (19).

The cytokine profile tends to transition toward a more pro-inflammatory state as Hashimoto’s thyroiditis advances. The damage to the thyroid gland may be further exacerbated by the increase in pro-inflammatory cytokines, which may also contribute to the development of symptoms such as fatigue, weight gain, and melancholy. Conversely, Graves’ disease is an additional autoimmune disorder that impacts the thyroid gland and is distinguished by hyperthyroidism. In Graves’ disease, the immune system generates antibodies that induce the thyroid gland to produce an excessive number of thyroid hormones. The pathogenesis of Graves’ disease has been linked to cytokines, including IL-1 and IL-17, which promote the production of thyroid-stimulating antibodies and the subsequent hyperthyroidism (20).

The transition from Hashimoto’s thyroiditis to Graves’ disease is not well understood, but it is suspected to be a complex interplay of genetic, environmental, and immunological factors. The conversion from hypothyroidism to hyperthyroidism may be influenced by changes in immune responses and cytokine levels, according to one hypothesis. For instance, Graves’ disease, which is distinguished by a Th2-dominated response, may be facilitated by a transition to a Th1-dominated cytokine profile in Hashimoto’s thyroiditis (21).

Study has demonstrated that cytokine levels are altered in patients with both Hashimoto’s thyroiditis and Graves’ disease, indicating a potential function for these molecules in the transition between the two conditions. For instance, patients with Hashimoto’s thyroiditis have been diagnosed with elevated lev-
els of pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-alpha, whereas Graves’ disease is associated with elevated levels of IL-1 and IL-17 (22).

Additional research is required to clarify the mechanisms that underlie the transition from Hashimoto’s thyroiditis to Graves’ disease and the function of cytokines in this process. The development of innovative therapeutic approaches for autoimmune thyroid disorders could be facilitated by an understanding of the immune pathways implicated in this transition. It may be feasible to intervene in the transition between Hashimoto’s thyroiditis and Graves’ disease and enhance patient outcomes by targeting specific cytokines or modulating immune responses.

“Genetic Predisposition” in the Transition from Hashimoto’s to Grave’s

It is crucial to comprehend the genetic underpinnings of autoimmune disorders in general. Graves’ disease and Hashimoto’s thyroiditis are believed to be the consequence of a combination of environmental triggers and genetic predisposition. The development of autoimmune thyroid diseases has been linked to the expression of numerous genes, including those that encode proteins that are involved in thyroid function and the immune response.

The human leukocyte antigen (HLA) gene is one gene that has been associated with both Graves’ disease and Hashimoto’s thyroiditis (23). HLA genes are essential for the immune system, as they regulate the body’s recognition and response to exogenous antigens. The transition from Hashimoto’s to Grave’s disease has been linked to an elevated risk of developing autoimmune thyroid diseases, including specific HLA genotypes.

Other genetic factors may also contribute to the transition from Hashimoto’s thyroiditis to Grave’s disease, in addition to HLA genes. For instance, the progression of autoimmune thyroid disorders may be influenced by variations in genes that regulate thyroid hormone production and metabolism. The balance of thyroid hormones in the body can be influenced by these genes, which can ultimately result in the development of hyperthyroidism in patients with Hashimoto’s thyroiditis (24).

Studies have demonstrated that family history is a substantial risk factor for autoimmune thyroid diseases. Individuals who have a first-degree relative who has been diagnosed with Hashimoto’s thyroiditis or Grave’s disease are at an elevated risk of developing these conditions themselves (25). This implies that the transition from Hashimoto’s to Grave’s disorder may be hereditary, as genetic factors are likely to be transmitted down from one generation to the next.

Genetic research has pinpointed specific gene polymorphisms that may elevate the likelihood of developing autoimmune thyroid diseases. For instance, the risk of developing Hashimoto’s thyroiditis and Grave’s disease has been elevated in correlation with variations in the CTLA-4 gene, which is involved in regulating the immune response (26). The development of autoimmune disorders can be influenced by these genetic differences, which can impair the immune system’s capacity to differentiate between self- and non-self-antigens.

Furthermore, research has demonstrated that epigenetic modifications, including epigenetic modifications to DNA methylation and histone acetylation, may also influence the progression of autoimmune thyroid diseases (27, 28). Ultimately, these modifications can contribute to the development of autoimmunity by altering gene expression patterns. Consequently, the transition from Hashimoto’s thyroiditis to Grave’s disease may be influenced by genetic factors that affect epigenetic regulation.

“Environment Triggers” in the Transition from Hashimoto’s to Grave’s

Stress is one of the primary environmental stimuli that contributes to the transition from Hashimoto’s thyroiditis to Grave’s disease (29, 30). The immune system can be significantly influenced by stress, resulting in an increase in inflammation and the production of antibodies that target the thyroid gland. This can lead to the development of Grave’s disease in individuals who were previously diagnosed with Hashimoto’s thyroiditis.

Exposure to specific medications or compounds is another environmental trigger that facilitates the transition between these two conditions. In individuals with Hashimoto’s thyroiditis, the development of Grave’s disease can be triggered by the interference with thyroid function caused by certain medications, such as amiodarone or lithium (31). In the same vein, the transition between these two autoimmune disorders can be influenced by exposure to specific chemicals or pollutants in the environment.

Additionally, the transition from Hashimoto’s thyroiditis to Grave’s disease may be precipitated by dietary factors. Certain foods, such as those that are high in selenium or iodine, can exacerbate autoimmune thyroid disorders and affect thyroid function (32, 33). In certain instances, individuals with Hashimoto’s thyroiditis may develop Grave’s disease as a result of consuming a diet that is abundant in these nutrients.

Hormonal imbalances can also act as an environmental catalyst for the transition between Hashimoto’s thyroiditis and Grave’s disease, in addition to stress, medications, chemicals, and diet. In individuals with Hashimoto’s thyroiditis, fluctuations in hormone levels, such as those that occur during pregnancy or menopause, can affect thyroid function and precipitate the development of Grave’s disease (34).

The transition between these two autoimmune disorders can be facilitated by viral infections. Autoimmune thyroid disorders have been associated with various viruses, including the Epstein-Barr virus and the herpes virus (35). A viral infection may occasionally serve as a catalyst for the transition from Hashimoto’s thyroiditis to Grave’s disease.

The transition from Hashimoto’s thyroiditis to Grave’s disease is not always predictable and may differ from person to person. This is a critical point to consider. The probability of developing Grave’s disease in individuals with Hashimoto’s thyroiditis can also be influenced by factors such as age, gender, and overall health (36). In order to develop targeted interventions that can prevent the development of Grave’s disease in individuals with Hashimoto’s thyroiditis and to gain a more comprehensive understanding of the environmental triggers that contribute to this transition, additional research is required.

Conclusion
Hashimoto’s thyroiditis and Graves’ disease are distinct autoimmune illnesses that specifically affect the thyroid gland, although they vary in terms of their underlying causes and resulting results. During the progression from Hashimoto’s thyroiditis to Graves’ disease, specific factors play a role in the alteration of immunological responses. The progression from Hashimoto’s thyroiditis to Graves’ disease exemplifies the intricate nature of autoimmune disorders and emphasizes the significance of diligent surveillance and prompt intervention to avert problems linked to thyroid dysfunction. Gaining insight into the mechanisms that drive this change is essential for expanding treatment options and enhancing patient outcomes in clinical practice.

References

15. Brent GA. Environmental exposures and autoimmune thyroid disease. Thyroid 2010; 20(7):755-761. DOI: https://doi.org/10.1089/thy.2010.1636
21. Rapoport B, McLachlan SM. Graves’ hyperthyroidism is antibody-mediated but is predominantly a Th1-type

27. Coppèdè F. Epigenetics and autoimmune thyroid diseases. Front Endocrinol (Lausanne) 2017; 8:149. DOI: https://doi.org/10.3389/fendo.2017.00149

Received: April 06, 2024 | Revised: April 29, 2024 | Accepted: May 11, 2024