Review (Narrative)

Bio-refinery for Wastewater Remediation How to Adopt Microalgae? (Part II)

Megan Chagin, PhD; Darren J. Brewer, PhD, 2

SUMMARY

Developing microalgae on wastewater offers new bits of knowledge for the microalgae business and in addition the wastewater treatment industry. The utilization of wastewaters for developing microalgae is essential keeping in mind the end goal to decrease the cost of microalgae creation. This is an essential for microalgae to enter the vitality advertise through biofuels. The wastewater treatment industry is confronting difficulties, (for example, micro pollutants destiny) that instigate the improvement of different options. Microalgae-related procedures can be an intriguing other option to the traditional enacted slime prepare. In spite of these two open doors, numerous innovative work challenges have still to be overcome keeping in mind the end goal to benefit from the maximum capacity of the blend of microalgae creation and wastewater treatment, to be specific in the advancement of vigorous, beneficial wastewater-adjusted micro algal species, and in the change and development of development and downstream preparing frameworks which will take into consideration better development, collecting and transformation of the algal biomass.

KEYWORDS Microalgae, Wastewater, Environment, Sustainable development, Biofuel

Sci Insigt. 2017; 2017:e00007. doi:10.15354/si.17.re006

Author Affiliations: Author affiliations are listed at the end of this article.

Correspondence to: Dr. Megan Chagin, PhD, Email: mchagin@basehq.org, Division of Biology and Chemistry, Or Dr. Darren J. Brewer, PhD, Email: djbrewer@basehq.org, Division of Energy and Resources. The BASE, Chapel Hill, NC 27510, USA

Copyright © 2017 Insights Publisher. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

PROCESS PRIVILEGE

Cultivation

Microalgae can be developed either in open frameworks or shut frameworks (called PBRs). A center will likewise be made on appended development framework (which are frequently executed in open frameworks yet can likewise be actualized shut frameworks) because of their potential for wastewater treatment.

Open Ponds and High-Rate Algal Ponds (HRAP)

Adjustment lakes have been utilized for the treatment of urban wastewater for quite a while (1) yet they require a considerable measure of land to be effective. To enhance the wastewater treatment prepare, high rate algal lakes (HRAPs) have been produced. HRAPs are shallow raceway-sort open lakes of single or different circles where a water speed of 0.15-0.3 m/s is acquired by the utilization of a paddlewheel (2). Their profundity is for the most part between 0.2-0.4 m (infrequently up to 1 m). CO₂ can be included a sump of around 1.5 m profundity. Contrasted with adjustment lakes, HRAPs decrease the surface required by an element of 5 (3) and the biomass efficiency while accomplishing a three-overlap change in yield from 10 ton/year/ha (4). In spite of requiring 50 times more space land than actuated slop frameworks (the most well-known wastewater treatment innovation), HRAPs' expenses are altogether lessened contrasted with enacted ooze frameworks: by an element of two for the capital expenses and by a component of five for the operational expenses (4).

Photo bioreactors

PBRs are shut frameworks where microalgae can be developed in axenic and controlled conditions (great imperviousness to pollutions). Additionally, the volumetric productivities are altogether higher than in open frameworks. For instance, better biomass and lipid productivities (+144% and +271% individually), and in addition N and P evacuation rates (+38% and +15% separately) were found in a PBR than in fiasks for the way of life of Chlamydomonas reinhardtii on wastewater (5). Be that as it may, the cost is essentially higher for these shut frameworks than for open frameworks (more than 10 times higher for a similar generation limit (6)). PBRs have been planned with a specific end goal to expand the volumetric efficiency of microalgae societies. Their most helpful favorable position for the microalgae business is that they keep societies axenic, permitting the development of delicate strains that produces highesteem atoms. Since a great deal of microorganisms is normally present in wastewaters, this valuable favorable position is lost while developing microalgae utilizing wastewater. The pickup in volumetric profitability does not balance the high cost of PBRs on account of urban or horticultural wastewater treatment. Be that as it may, it could be of enthusiasm for situations where a high esteem particle created amid the procedure can balance the high cost of PBRs, or when the cost of wastewater treatment is not an issue (a wastewater containing exceptionally risky contaminations for instance).

Affixed Microalgae Cultivation

In appended development, microalgae are immobilized and fixed onto supporting materials. The supporting materials are immerged in the supplements (wastewater in our specific case). A comprehensive audit has been performed as of late on the utilization of appended microalgae development frameworks to treat wastewater (7). They saw that the couple of accessible examinations of wastewater treatment execution gave practically identical results for suspended and connected algal frameworks. Their fundamental decision is that there is a requirement for more research studies on this joined development frameworks on variables that influence algal development, supplement mass transport, species determination, algal-bacterial collaborations, and upscaling of lab research. Nonetheless, appended micro algal development frameworks have been connected to a couple of wastewaters with promising results. For instance, the utilization of benthic microalgae in a connected development framework treating dairy fertilizer could decrease by 26% the land zone required for a proportionate nitrogen take-up rate contrasted with the traditional corn/rye pivot handle (23%) for phosphorus) (8). Biofilm pivoting circles reactors are extremely encouraging and efficient connected development frameworks for wastewater treatment utilizing microalgae with great biomass efficiency. Biomass productivities between 20-31 g/m²/day and supplement decrease rates as high as 14.1 g/m²/day for nitrogen and 2.1 g/m²/day for phosphorus have been accounted for (9). Correspondingly, a normal biomass profitability of 20.1 fi 0.7 g/m²/day was gotten in a pivoting organic contactor based PBR and the creators kept up the way of life over a time of 21 weeks without re-immunization (10). These pivoting biofilm circles reactors give a superior surface territory to volume proportion when contrasted with HRAPs. The turn through the somewhat filled culture vessel takes into consideration an upgraded gas-to-biofilm mass exchange because of the higher time of introduction to the vaporous stage. Energies on components that influence algal development, supplement mass transport, species determination, algal-bacterial cooperation's, and upscaling of lab research. Be that as it may, joined micro algal development frameworks have been connected to a couple of wastewaters with promising results.

Harvesting the Biomass: Consolidation and Dewatering

Micro algal societies are commonly to a great degree weakened, with biomass fixations extending from 0.3 to 5 g/L, best case scenario (11). The recuperation of basically 99% of the water from the way of life remains a noteworthy test for solids detachment innovation. So also to the wastewater treatment industry, two stages will be required for reaping the biomass. However as opposed to actuated slime, microalgae don't shape flocs actually or settle as effortlessly as initiated slop (their thickness is near 1 (12)), hence much of the time, the utilization of a coagulant or a flocculants will be required for this initial step. A second step called dewatering is then required to evacuate the extracellular water. The decision amongst centrifugation and filtration will be talked about.

Coagulation is the physico-synthetic process which kills the surface charge of particles keeping in mind the end goal to permit them to total in flocs. To kill the surface charge, two strategies can be connected: the utilization of chemicals (a coagulant) or the adjustment of the earth (for instance an adjustment in pH or use of an electric current). Flocculation is the procedure which totals little flocs into bigger ones by the utilization of flocculants (for the most part polymeric substances). These polymers agglomerate the little flocs making securities between them prompting to bigger flocs. The entire coagulation-flocculation process is regularly disentangled by the expression "flocculation". Flocculation is a proficient, minimal effort gathering strategy with low vitality necessities which is especially adjusted to microalgae culture (13). In addition, this is a technique that might be effortlessly scaled up by imitating and adjusting forms that are as of now utilized as a part of the treatment of wastewater. Different methods are accessible: bio flocculation (utilization of microorganisms to upgrade the flocculation of microalgae), auto flocculation (initiated by a pH increment, (14) or a pH diminish (15)) and electro flocculation (utilization of an electric field, (16)). Albeit just a couple contemplates exist on the utilization of flocculation to gather micro algal biomass developed on wastewater (17, 18), the method ought to effectively work for Schematic perspective of a microalgae biofilm pivoting plates reactor utilized for wastewater treatment.

Dewatering by Centrifugation or Refining

Centrifugation is the most pragmatic and basic method to gather and focus a micro algal biomass (19). It can be utilized straightforwardly on the micro algal biomass or after flocculation step. Be that as it may, it is entirely costly and all the more essentially it devours a lot of vitality (20). In this manner, its application to the dewatering of micro algal biomass developed on wastewater where expansive volumes should be centrifuged ought to be committed to exceptionally specific applications: when the biomass (or piece of it) can be valorized at a high esteem or when no other dewatering system is accessible. In this specific situation, the utilization of filtration and particularly devoted, ease and low-vitality devouring belt filter press could be a decent choice for dewatering the micro algal biomass developed on wastewater (20). In fact, belt filter press has been appeared to use around six times less vitality than centrifugation for similar results (21). Examination and research on this sort of dewatering systems are still at an early stage yet ought to be empowered considering these promising first comes about.

Biomass Valorization

Once the biomass has been reaped and the extracellular water evacuated, the dry weight fixation is by and large around 15% to 25% (22). The collected biomass can be utilized as a part of the horticultural segment, either as a creature encourage or as a compost. Nonetheless, for these applications, microalgae biomass ought not to contain high grouping of continuing contaminations, for example, overwhelming metals or enduring natural toxins that could be moved into the creatures or the dirt. For those utilizations, drying would be required. Two systems are especially adjusted since they don't denature the biomass: shower drying or sunlight based drying. Shower drying is exceptionally powerful (23) yet is extremely vitality escalated because of the utilization of a hot gas (nitrogen or air) to dry the biomass. Sun based drying is exceptionally efficient and has a low vitality request yet requires a vast surface zone (24). Subsequent to drying the biomass can be utilized as creature sustains (25) or as manure (26). The wet biomass can likewise be utilized as a feedstock for fertilizing the soil. Treating the soil has been effectively performed at the pilot-scale for microalgae (27) and is conceived to be as similarly fruitful with micro algal biomass. In fact green kelp manure could viably build the development and water resistance of tomato plants (28). Subsequent to drying, the biomass can likewise be utilized as feedstock for high-esteem atoms relying upon the overwhelming microalgae strains in the wastewater developed biomass. For instance, cyanobacteria are a decent hotspot for shade, for example, phycocyanin (29), this waterdissolvable color is effortlessly removed from the biomass. Other high-esteem particles, for example, omega 3 (30) or carotenoids are extremely fascinating on a temperate perspective. Be that as it may, the efficiency of these particles in wastewater developed micro algal biomass is probably going to be low since it needs specific conditions to be enhanced (axenic societies, ideal temperature and medium, etc.). Moreover, strict directions forced by the nourishment, pharmaceutical and restorative businesses would presumably obstruct the section of wastewater-developed micro algal removes on those business sectors.

Along these lines, the most encouraging utilization of this biomass would be the vitality showcase. For vitality applications, drying ought to be maintained a strategic distance from (20). Wet procedures must be utilized to change over the biomass into vitality. Lipids can be removed through wet extraction systems and afterward changed over through Trans esterification (11). Promising results are originating from late screenings, for instance, strains were found to develop on wastewater and gather lipids in the meantime (up to 23.7 mg/L/day). Be that as it may, it is still difficult to change the microalgae digestion system to lipid

amassing in a microalgae culture developing on wastewater. High lipid productivities (at any rate more than 200 mg/L/day) are required for financial and vivacious suitability of microalgae to biofuel forms (20). Coordinate wet transformation procedures of the entire biomass, for example, anaerobic processing or aqueous liquefaction (HTL) are in this manner more adjusted. Anaerobic processing is the transformation of a biomass through dark fermentation in to a biogas. It is efficient on microalgae with theoretical yields between 260 and 414 mL of CH₄/g of unpredictable solids. Shockingly, the monetary estimation of biogas is too low at present (at most €1.33/nm³ of CH4 utilizing the most noteworthy power purchase back rate of Electricité de France). These days, anaerobic assimilation is not a monetarily profitable answer for microalgae biomass valorization. HTL is a thermochemical procedure which changes over wet biomass into a bio crude (overwhelming oil, yields somewhere around 20 and 87%), gas (>95% of CO₂ that can be reused to the development step), some remaining solids and a watery stage that contains vast measure of supplements. The possibility to reuse the watery stage has been contemplated so as to decrease the development expenses and increment the general manageability of the procedure. Development can be hindered at first yet after an adjustment period, higher biomass productivities have been watched likely because of mixotrophic development. The bio crude can be specifi-

cally singed in an evaporator or updated through hydro treating into a biofuel (a blend of naphtha, gas and jet fuel (5)). HTL changes over the entire biomass, along these lines, there is no requirement for a monoclonal, monospecies, high I lipid-delivering microalgae in contrast with the lipid extraction and transformation pathway. The HTL biomass change process is skeptic to the sort of sustain and consequently, expands the scope of biomass and blends of natural material (counting the enacted muck (microscopic organisms) and algal biomass, and additionally zooplankton created from wastewater treatment) that can be utilized. Micro algal biomass developed on wastewater may not adjust to compound and natural wellbeing directions to be reused in the crude state, for instance, in examples when the biochemical synthesis does not meet the coveted criteria, or when there is a lot of fouling by pathogenic life forms or by harmful contaminations. In such cases, change of the second rate biomass into bio char through pyrolysis turns into a fascinating quality including elective alternative. Contingent upon the synthesis of the bio char, it can then be utilized as soil revision with diminished danger of filtering of dangerous material, for example, overwhelming metals, since the pyrolysis procedure helps in catching the metals in framework. strong

ARTICLE INFORMATION

Author Affiliations: Division of Biology and Chemistry (Chagin); Division of Energy and Resources(Brewer), The BASE, Chapel Hill, NC 27510, USA.

Author Contributions: All authors have full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. *Study concept and design*: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: All authors.
Critical revision of the manuscript for important intellectual content: All authors.
Statistical analysis: N/A.
Obtained funding: N/A.

Administrative, technical, or material support: All authors.

Study supervision: All authors.

Conflict of Interest Disclosures: All authors declared no competing interests of this manuscript submitted for publication.

Funding/Support: N/A.

Role of the Funder/Sponsor: N/A

How to Cite This Paper: Chagin M, Brewer D. Bio-refinery for wastewater remediation: How to adopt microalgae? (part II) 2017; 2017:e00007.

Digital Object Identifier (DOI): http://dx.doi.org/10.15354/si.17.re006.

Article Submission Information: Received, November 13, 2016; Revised: December 19, 2016; Accepted: January 20, 2017.

REFERENCES

- Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G. An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 2012; 111:191-200.
- Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 2011; 102:35-42.
- Caldwell DH. Sewage oxidation pond performance, operation and design.

- Sew. Works J. 1946, 3, 433-458. Available online: http://www.jstor.org/stable/25030250
- (accessed on 12 November 2015).
- Picot B, Bahlaoui A, Moersidik S, Baleux B, Bontoux J. Comparison of the Purifying Efficiency of High Rate Algal Pond with Stabilization. Pond Water Sci Technol 1992; 25:197-206.
- Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR. Algal biofuels from wastewater treatment high rate algal

- ponds. Water Sci Technol 2011; 63:660-665.
- Kong QX, Li L, Martinez B, Chen P, Ruan R. Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Appl Biochem Biotechnol 2010; 160:9-18.
- Davis R, Aden A, Pienkos PT. Technoeconomic analysis of autotrophic microalgae for fuel production. Appl Energy 2011; 88:3524-3531.

- Kesaano M, Sims RC. Algal biofilm based technology for wastewater treatment. Algal Res 2014; 5:231-240.
- Wilkie AC, Mulbry WW. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour. Technol 2002; 84:81-91.
- Christenson LB, Sims RC. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 2012; 109:1674-1684.
- Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wijffels RH. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 2014; 111:2436-2445.
- Brennan L, Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energ Rev 2010; 14:557-577.
- Millero FJ, Lepple FK. The density and expansibility of artificial seawater solutions from 0 to 40 C and 0 to 21‰ chlorinity. Mar Chem 1973; 1:89-104.
- 14. Vandamme D, Foubert I, Fraeye I. Flocculation of Chlorella vulgar is induced by high pH: Role of magnesium and calcium and practical implications. Bioresour Technol 2012; 105:114-119.
- Liu J, Zhu Y, Tao Y, Zhang Y, Li A. Freshwater microalgae harvested via fiocculation induced by pH decrease. Biotechnol Biofuels 2013; 98.

- Lee A, Lewis D, Ashman P. Harvesting of marine microalgae by electrofiocculation: The energetics, plant design, and economics. Appl Energ 2013; 108:45-53.
- Buelna G, Bhattarai KK, de la Noue J, Taiganides EP. Evaluation of various fiocculants for the recovery of algal biomass grown on pig-waste. Biol Waste 1990; 31:211-222.
- de Godos I, Guzman HO, Soto R, García-Encina PA, Becares E, Muñoz R, Vargas VA. Coagulation/fiocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresour Technol 2011; 102:923-927.
- Singh A, Singh Nigam P, Murphy JD. Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 2011; 102:26-34.
- Benemann JR, Kopman BL, Weissman DE, Eisenberg DE, Goebel RP.
 Development of Microalgae Harvesting and High Rate Pond Technologies in California in Algal Biomass, Shelef G, Soeder CJ, Eds., Elsevier: Amsterdam, The Netherlands, 1980, pp457.
- Sturm BSM., Lamer SL. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energ 2011; 88:3499-3506.
- 22. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J Renew Sustain Energ 2010; 2.

- Leach G, Oliveira G, Morais R. Spraydrying of Dunaliella salina to produce a ß-carotene rich powder. J Ind Microbiol Biotechnol 1998; 20:82-85.
- Prakash J, Bushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R. Microalgal Biomass drying by a simple solar device. Int J Sol Energy 1997; 18:303-311.
- Becker EW. Micro-algae as a source of protein. Biotechnol Adv 2007; 25:207-210.
- Mulbry W, Westhead EK, Pizarro C, Sikora L. Recycling of manure nutrients: Use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 2005; 96:451-458.
- Han W, Clarke W, Pratt S. Composting of waste algae: A review. Waste Manag 2014; 34:1148-1155.
- Eyras MC, Rostagno CM, Defossé GE. Biological Evaluation of Seaweed Composting. Compost Sci Util 1998; 6.
- Eriksen NT. Production of phycocyanin-A pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 2008; 80:1-14
- 30. Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact 2012; 11:96-105.