
https://bonoi.org/index.php/si SI | December 31, 2024 | vol. 45 | no. 6 1665 

Opinion 
Physics 

The Boundaries of Gravitational Wave 
How Far Could We Reach? 
 

Marc Nassif* 
École Normale Supérieure de Lyon, 15 parvis René Descartes, 69342 Lyon, France 
*: All correspondence should be sent to: Dr. Marc Nassif 
Author’s Contact: Dr. Marc Nassif, Ph.D., E-mail: marcnassif@ensl.edu.fr 
DOI: https://doi.org/10.15354/si.24.op216 
Funding: No funding source declared. 
COI: The author declares no competing interest. 
AI Declaration: The author affirms that artificial intelligence did not contribute to the process of preparing the work. 

 

 

Advanced scientific instruments have recently detected gravitational waves, which were pre-

dicted by Albert Einstein in his general theory of relativity. Astronomers are afforded a novel 

method of investigating and comprehending the cosmos because of these ripples in spacetime, 

which convey information regarding the movements of colossal objects in the universe. Nev-

ertheless, the sensitivity of current detectors, such as LIGO and Virgo, is restricted to a maxi-

mum distance of several billion light-years, which limits their detection. Future technological 

advancements and the development of more sensitive, larger detectors hold the potential to 

detect gravitational waves from even greater distances in the future, despite this constraint. 

Scientists aspire to uncover new secrets about our universe and potentially detect gravitational 

waves from the edge of the observable universe by pushing the boundaries of what is currently 

feasible. 
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RAVITATIONAL waves are disturbances in the fabric 

of spacetime that are generated by violent events in the 

universe, such as neutron star collisions and black hole 

mergers (Flanagan & Hughes, 2005; Riles, 2012). In his theory 

of general relativity, Albert Einstein initially predicted the ex-

istence of these waves (Einstein & Rosen, 1937; Vitale, 2021). 

The Laser Interferometer Gravitational-Wave Observatory 

(LIGO) made the first detection of gravitational waves in 2015 

(Abbott et al., 2016). Since that time, numerous additional grav-

itational wave detectors have been constructed worldwide, ena-

bling researchers to conduct a more comprehensive examination 

of these enigmatic signals (Abbott et al., 2017; Dergachev & 

Papa, 2024).  

The extent to which gravitational waves can traverse the 

universe is one of the most intriguing inquiries (Huerta et al., 

2021). Gravitational waves are believed to be subject to certain 

constraints, in contrast to electromagnetic waves, which are 

capable of traveling through space indefinitely (Riles, 2012; 

Unnikrishnan & Gillies, 2018). One of these constraints is the 

curvature of spacetime, which can result in gravitational waves 

losing energy as they travel through the cosmos (Recami et al., 

2003; Thorne, 1997).  
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The density of matter in the universe is another factor that 

can restrict the reach of gravitational waves (Calcagni et al., 

2019). The surrounding material can absorb or distort gravita-

tional waves as they transit through regions of high matter den-

sity (Abramovici et al., 1992; Baym et al., 2017; Sathyaprakash, 

2001). This can complicate the process of detecting gravitational 

waves from sources that are situated at a great distance from us.  

Gravitational waves have been detected from sources that 

are billions of light-years distant, despite these limitations (Ab-

bott et al., 2016; Abbott et al., 2017). This implies that these 

waves are capable of traversing vast distances throughout the 

universe (Giovannini, 2023; Lee, 2018). In fact, there are scien-

tists who believe that gravitational waves have the potential to 

offer a glimpse into the early universe (Gladyshev & Fomin, 

2019; Hogan, 2007; Sathyaprakash & Schutz, 2009), enabling us 

to investigate the events that transpired immediately after the 

Big Bang (Grishchuk, 2003; Zhao & Zhang, 2006).  

The sensitivity of our detectors is one of the primary ob-

stacles to investigating the boundaries of gravitational waves 

(Gair, 2014; Wette, 2023). Signals from sources that are com-

paratively close to the detector, such as black hole mergers in 

neighboring galaxies, are currently detectable by gravitational 

wave detectors (Flanagan & Hughes, 2005; Kalogera et al., 2019; 

Moore et al., 2014). Nevertheless, the detection of signals from 

sources that are located at a greater distance necessitates the use 

of more sensitive instruments and more sophisticated data anal-

ysis techniques (Nousi et al., 2023; Yunes & Siemens, 2013).  

In the future, scientists aspire to construct more sophisti-

cated gravitational wave detectors that will enable them to in-

vestigate sources that are situated at even greater distances 

(Bandopadhyay et al., 2024; Mukherjee, 2024). Signals from the 

most distant objects in the universe, such as mergers of super-

massive black holes at the nuclei of distant galaxies, could po-

tentially be detected by these detectors (Kalogera et al., 2019; 

Yu et al., 2018).  

The nature of the sources themselves is another critical 

factor to consider when investigating the boundaries of gravita-

tional waves (Corsi et al., 2024; Domènech & Sasaki, 2024). 

Some sources, such as black hole mergers, have the capacity to 

generate gravitational waves that are exceedingly powerful and 

capable of traversing vast distances throughout the universe 

(Abbott et al., 2017). Other sources, such as supernova explo-

sions, may generate dimmer signals that are more challenging to 

identify from a distance (Dergachev & Papa, 2024; Mitra et al., 

2023; Sathyaprakash, 2001; Schutz, 1989).  

In general, the boundaries of gravitational waves remain a 

subject of active research in the field of astrophysics. Scientists 

aspire to develop a more comprehensive comprehension of the 

universe's nature and the events that influence it by investigating 

these enigmatic signals. Gravitational wave astronomy may 

soon enable us to explore the cosmos to greater depths because 

of the ongoing advancement of new technologies and tech-

niques.■ 
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