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The Boundaries of Gravitational Wave
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Advanced scientific instruments have recently detected gravitational waves, which were pre-
dicted by Albert Einstein in his general theory of relativity. Astronomers are afforded a novel
method of investigating and comprehending the cosmos because of these ripples in spacetime,
which convey information regarding the movements of colossal objects in the universe. Nev-
ertheless, the sensitivity of current detectors, such as LIGO and Virgo, is restricted to a maxi-
mum distance of several billion light-years, which limits their detection. Future technological
advancements and the development of more sensitive, larger detectors hold the potential to
detect gravitational waves from even greater distances in the future, despite this constraint.
Scientists aspire to uncover new secrets about our universe and potentially detect gravitational
waves from the edge of the observable universe by pushing the boundaries of what is currently

feasible.
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RAVITATIONAL waves are disturbances in the fabric

of spacetime that are generated by violent events in the

universe, such as neutron star collisions and black hole
mergers (Flanagan & Hughes, 2005; Riles, 2012). In his theory
of general relativity, Albert Einstein initially predicted the ex-
istence of these waves (Einstein & Rosen, 1937; Vitale, 2021).
The Laser Interferometer Gravitational-Wave Observatory
(LIGO) made the first detection of gravitational waves in 2015
(Abbott et al., 2016). Since that time, numerous additional grav-
itational wave detectors have been constructed worldwide, ena-
bling researchers to conduct a more comprehensive examination
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of these enigmatic signals (Abbott et al., 2017; Dergachev &
Papa, 2024).

The extent to which gravitational waves can traverse the
universe is one of the most intriguing inquiries (Huerta et al.,
2021). Gravitational waves are believed to be subject to certain
constraints, in contrast to electromagnetic waves, which are
capable of traveling through space indefinitely (Riles, 2012;
Unnikrishnan & Gillies, 2018). One of these constraints is the
curvature of spacetime, which can result in gravitational waves
losing energy as they travel through the cosmos (Recami et al.,
2003; Thorne, 1997).
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The density of matter in the universe is another factor that
can restrict the reach of gravitational waves (Calcagni et al.,
2019). The surrounding material can absorb or distort gravita-
tional waves as they transit through regions of high matter den-
sity (Abramovici et al., 1992; Baym et al., 2017; Sathyaprakash,
2001). This can complicate the process of detecting gravitational
waves from sources that are situated at a great distance from us.

Gravitational waves have been detected from sources that
are billions of light-years distant, despite these limitations (Ab-
bott et al., 2016; Abbott et al., 2017). This implies that these
waves are capable of traversing vast distances throughout the
universe (Giovannini, 2023; Lee, 2018). In fact, there are scien-
tists who believe that gravitational waves have the potential to
offer a glimpse into the early universe (Gladyshev & Fomin,
2019; Hogan, 2007; Sathyaprakash & Schutz, 2009), enabling us
to investigate the events that transpired immediately after the
Big Bang (Grishchuk, 2003; Zhao & Zhang, 2006).

The sensitivity of our detectors is one of the primary ob-
stacles to investigating the boundaries of gravitational waves
(Gair, 2014; Wette, 2023). Signals from sources that are com-
paratively close to the detector, such as black hole mergers in
neighboring galaxies, are currently detectable by gravitational
wave detectors (Flanagan & Hughes, 2005; Kalogera et al., 2019;
Moore et al., 2014). Nevertheless, the detection of signals from
sources that are located at a greater distance necessitates the use
of more sensitive instruments and more sophisticated data anal-
ysis techniques (Nousi et al., 2023; Yunes & Siemens, 2013).
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