

Physics

The Boundaries of Gravitational Wave How Far Could We Reach?

Marc Nassif

École Normale Supérieure de Lyon, 15 parvis René Descartes, 69342 Lyon, France
*: All correspondence should be sent to: Dr. Marc Nassif
Author's Contact: Dr. Marc Nassif, Ph.D., E-mail: marcnassif@ensl.edu.fr
DOI: https://doi.org/10.15354/si.24.op216
Funding: No funding source declared.
COI: The author declares no competing interest.
Al Declaration: The author affirms that artificial intelligence did not contribute to the process of preparing the work.

Advanced scientific instruments have recently detected gravitational waves, which were predicted by Albert Einstein in his general theory of relativity. Astronomers are afforded a novel method of investigating and comprehending the cosmos because of these ripples in spacetime, which convey information regarding the movements of colossal objects in the universe. Nevertheless, the sensitivity of current detectors, such as LIGO and Virgo, is restricted to a maximum distance of several billion light-years, which limits their detection. Future technological advancements and the development of more sensitive, larger detectors hold the potential to detect gravitational waves from even greater distances in the future, despite this constraint. Scientists aspire to uncover new secrets about our universe and potentially detect gravitational waves from the edge of the observable universe by pushing the boundaries of what is currently feasible.

Keywords: Gravitational Wave; Universe; Signal Detector; Boundaries; Galaxies

Science Insights, 2024 December 31; Vol. 45, No. 6, pp.1665-1668.

© 2024 Insights Publisher. All rights reserved.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed by the Insights Publisher.

RAVITATIONAL waves are disturbances in the fabric of spacetime that are generated by violent events in the universe, such as neutron star collisions and black hole mergers (Flanagan & Hughes, 2005; Riles, 2012). In his theory of general relativity, Albert Einstein initially predicted the existence of these waves (Einstein & Rosen, 1937; Vitale, 2021). The Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first detection of gravitational waves in 2015 (Abbott et al., 2016). Since that time, numerous additional gravitational wave detectors have been constructed worldwide, enabling researchers to conduct a more comprehensive examination

of these enigmatic signals (Abbott et al., 2017; Dergachev & Papa, 2024).

The extent to which gravitational waves can traverse the universe is one of the most intriguing inquiries (Huerta et al., 2021). Gravitational waves are believed to be subject to certain constraints, in contrast to electromagnetic waves, which are capable of traveling through space indefinitely (Riles, 2012; Unnikrishnan & Gillies, 2018). One of these constraints is the curvature of spacetime, which can result in gravitational waves losing energy as they travel through the cosmos (Recami et al., 2003; Thorne, 1997).

The density of matter in the universe is another factor that can restrict the reach of gravitational waves (Calcagni et al., 2019). The surrounding material can absorb or distort gravitational waves as they transit through regions of high matter density (Abramovici et al., 1992; Baym et al., 2017; Sathyaprakash, 2001). This can complicate the process of detecting gravitational waves from sources that are situated at a great distance from us.

Gravitational waves have been detected from sources that are billions of light-years distant, despite these limitations (Abbott et al., 2016; Abbott et al., 2017). This implies that these waves are capable of traversing vast distances throughout the universe (Giovannini, 2023; Lee, 2018). In fact, there are scientists who believe that gravitational waves have the potential to offer a glimpse into the early universe (Gladyshev & Fomin, 2019; Hogan, 2007; Sathyaprakash & Schutz, 2009), enabling us to investigate the events that transpired immediately after the Big Bang (Grishchuk, 2003; Zhao & Zhang, 2006).

The sensitivity of our detectors is one of the primary obstacles to investigating the boundaries of gravitational waves (Gair, 2014; Wette, 2023). Signals from sources that are comparatively close to the detector, such as black hole mergers in neighboring galaxies, are currently detectable by gravitational wave detectors (Flanagan & Hughes, 2005; Kalogera et al., 2019; Moore et al., 2014). Nevertheless, the detection of signals from sources that are located at a greater distance necessitates the use of more sensitive instruments and more sophisticated data analysis techniques (Nousi et al., 2023; Yunes & Siemens, 2013).

In the future, scientists aspire to construct more sophisticated gravitational wave detectors that will enable them to investigate sources that are situated at even greater distances (Bandopadhyay et al., 2024; Mukherjee, 2024). Signals from the most distant objects in the universe, such as mergers of supermassive black holes at the nuclei of distant galaxies, could potentially be detected by these detectors (Kalogera et al., 2019; Yu et al., 2018).

The nature of the sources themselves is another critical factor to consider when investigating the boundaries of gravitational waves (Corsi et al., 2024; Domènech & Sasaki, 2024). Some sources, such as black hole mergers, have the capacity to generate gravitational waves that are exceedingly powerful and capable of traversing vast distances throughout the universe (Abbott et al., 2017). Other sources, such as supernova explosions, may generate dimmer signals that are more challenging to identify from a distance (Dergachev & Papa, 2024; Mitra et al., 2023; Sathyaprakash, 2001; Schutz, 1989).

In general, the boundaries of gravitational waves remain a subject of active research in the field of astrophysics. Scientists aspire to develop a more comprehensive comprehension of the universe's nature and the events that influence it by investigating these enigmatic signals. Gravitational wave astronomy may soon enable us to explore the cosmos to greater depths because of the ongoing advancement of new technologies and techniques.

References

- Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., . . . Zweizig, J. (2016). Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6). DOI: https://doi.org/10.1103/physrevlett.116.061102
- Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., Affeldt, C., Afrough, M., Agarwal, B., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., . . . Zweizig, J. (2017).
 GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 119(14). DOI: https://doi.org/10.1103/physrevlett.119.141101
- Abramovici, A., Althouse, W. E., Drever, R. W. P., Gürsel, Y., Kawamura, S., Raab, F. J., Shoemaker, D., Sievers, L., Spero, R. E., Thorne, K. S., Vogt, R. E., Weiss, R., Whitcomb, S. E., & Zucker, M. E. (1992). LIGO: The Laser Interferometer Gravitational-Wave Observatory. Science, 256(5055), 325–333. DOI: https://doi.org/10.1126/science.256.5055.325
- Bandopadhyay, A., Kacanja, K., Somasundaram, R., Nitz, A. H., & Brown, D. (2024). Measuring neutron star radius with second and third generation gravitation-

- al wave detector networks. Classical and Quantum Gravity. DOI:
- https://doi.org/10.1088/1361-6382/ad828a
- Baym, G., Patil, S. P., & Pethick, C. J. (2017). Damping of gravitational waves by matter. Physical Review. D/Physical Review. D., 96(8). DOI: https://doi.org/10.1103/physrevd.96.084033
- Calcagni, G., Kuroyanagi, S., Marsat, S., Sakellariadou, M., Tamanini, N., & Tasinato, G. (2019). Quantum gravity and gravitational-wave astronomy. Journal of Cosmology and Astroparticle Physics, 2019(10), 012. DOI:
 - https://doi.org/10.1088/1475-7516/2019/10/012
- Corsi, A., Barsotti, L., Berti, E., Evans, M., Gupta, I., Kritos, K., Kuns, K., Nitz, A. H., Owen, B. J., Rajbhandari, B., Read, J., Sathyaprakash, B. S., Shoemaker, D. H., Smith, J. R., & Vitale, S. (2024). Multi-messenger astrophysics of black holes and neutron stars as probed by ground-based gravitational wave detectors: from present to future. Frontiers in Astronomy and Space Sciences, 11. DOI: https://doi.org/10.3389/fspas.2024.1386748
- Dergachev, V., & Papa, M. A. (2024). Early release of the expanded atlas of the sky in continuous gravitational waves. Physical Review. D/Physical Review. D., 109(2). DOI:
 - https://doi.org/10.1103/physrevd.109.022007

- Domènech, G., & Sasaki, M. (2024). Probing Primordial Black Hole Scenarios with Terrestrial Gravitational Wave Detectors. Classical and Quantum Gravity, 41(14), 143001. DOI:
 - https://doi.org/10.1088/1361-6382/ad5488
- Einstein, A., & Rosen, N. (1937). On gravitational waves. Journal of the Franklin Institute, 223(1), 43–54. DOI: https://doi.org/10.1016/s0016-0032(37)90583-0
- Flanagan, É. É., & Hughes, S. A. (2005). The basics of gravitational wave theory. New Journal of Physics, 7, 204. DOI: https://doi.org/10.1088/1367-2630/7/1/204
- Gair, J. R. (2014). The Scientific Potential of Space-Based Gravitational Wave Detectors. In Astrophysics and space science proceedings (pp. 225–243). DOI:

https://doi.org/10.1007/978-3-319-10488-1_20

- Giovannini, M. (2023). Relic gravitons and high-frequency detectors. Journal of Cosmology and Astroparticle Physics, 2023(05), 056. DOI: https://doi.org/10.1088/1475-7516/2023/05/056
- Gladyshev, V., & Fomin, I. (2019). The Early Universe as a Source of Gravitational Waves. In IntechOpen eBooks. DOI:
 - https://doi.org/10.5772/intechopen.87946
- Grishchuk, L. P. (2003). The early universe odyssey with gravitational waves. In 2001: A Relativistic Spacetime Odyssey: Experiments and Theoretical Viewpoints on General Relativity and Quantum Gravity. Proceedings of the 25th Johns Hopkins Workshop on Current Problems in Particle Theory, Firenze, Italy, 3 5 September 2001. DOI: https://doi.org/10.1142/9789812791368_0013
- Hogan, C. J. (2007). Sounding out the Big Bang. Physics World, 20(6), 20–26. DOI: https://doi.org/10.1088/2058-7058/20/6/32
- Huerta, E. A., Khan, A., Huang, X., Tian, M., Levental, M., Chard, R., Wei, W., Heflin, M., Katz, D. S., Kindratenko, V., Mu, D., Blaiszik, B., & Foster, I. (2021). Accelerated, scalable and reproducible Al-driven gravitational wave detection. Nature Astronomy, 5(10), 1062–1068. DOI: https://doi.org/10.1038/s41550-021-01405-0
- Kalogera, V., Berry, C. P. L., Colpi, M., Fairhurst, S., Justham, S., Mandel, I., Mangiagli, A., Mapelli, M., Mills, C., Sathyaprakash, B., Schneider, R., Tauris, T., & Valiante, R. (2019, May 31). Deeper, Wider, Sharper: Next-Generation Ground-based Gravitational-Wave Observations of Binary Black Holes. Bulletin of the AAS.
 - https://baas.aas.org/pub/2020n3i242
- Lee, H. M. (2018). Long Journey toward the Detection of Gravitational Waves and New Era of Gravitational Wave Astrophysics. Journal of the Korean Physical Society, 73(6), 684–700. DOI: https://doi.org/10.3938/jkps.73.684
- Mitra, A., Shukirgaliyev, B., Abylkairov, Y. S., & Abdikamalov, E. (2023). Exploring supernova gravitational waves with machine learning. Monthly Notices of the Royal Astronomical Society, 520(2), 2473–2483. DOI: https://doi.org/10.1093/mnras/stad169
- Moore, C. J., Cole, R. H., & Berry, C. P. L. (2014). Gravitational-wave sensitivity curves. Classical and Quantum Gravity, 32(1), 015014. DOI: https://doi.org/10.1088/0264-9381/32/1/015014
- Mukherjee, S. (2024). A New Gravitational Wave Probe to

- the Nature of Dark Energy from the Aging of the Universe: Can Future Detectors Achieve it? arXiv (Cornell University). DOI: https://doi.org/10.48550/arxiv.2406.17041
- Nousi, P., Koloniari, A. E., Passalis, N., Iosif, P., Stergioulas, N., & Tefas, A. (2023). Deep residual networks for gravitational wave detection. Physical Review. D/Physical Review. D., 108(2). DOI: https://doi.org/10.1103/physrevd.108.024022
- Recami, E., Zamboni-Rached, M., Nobrega, K., Dartora, C., & F, H. H. (2003). On the localized superluminal solutions to the maxwell equations. IEEE Journal of Selected Topics in Quantum Electronics, 9(1), 59–73. DOI:
 - https://doi.org/10.1109/jstqe.2002.808194
- Riles, K. (2012). Gravitational waves: Sources, detectors and searches. Progress in Particle and Nuclear Physics, 68, 1–54. DOI: https://doi.org/10.1016/j.ppnp.2012.08.001
- Sathyaprakash, B. S. (2001). The gravitational wave symphony of the Universe. Pramana, 56(4), 457–475. DOI:
 - https://doi.org/10.1007/s12043-001-0096-7
- Sathyaprakash, B. S., & Schutz, B. F. (2009). Physics, Astrophysics and Cosmology with Gravitational Waves. Deleted Journal, 12(1). DOI: https://doi.org/10.12942/lrr-2009-2
- Schutz, B. F. (1989). Gravitational wave sources and their detectability. Classical and Quantum Gravity, 6(12), 1761–1780. DOI: https://doi.org/10.1088/0264-9381/6/12/006
- Thorne, K. S. (1997). Gravitational Radiation a New Window onto the Universe. (Karl Schwarzschild Lecture 1996). Reviews in Modern Astronomy, 10, 1–18. Available at:
 - http://ui.adsabs.harvard.edu/abs/1997RvMA.10.1T/abstract
- Unnikrishnan, C. S., & Gillies, G. T. (2018). Gravitational waves at their own gravitational speed. International Journal of Modern Physics D, 27(14), 1847015. DOI: https://doi.org/10.1142/s0218271818470156
- Vitale, S. (2021). The first 5 years of gravitational-wave astrophysics. Science, 372(6546). DOI: https://doi.org/10.1126/science.abc7397
- Wette, K. (2023). Searches for continuous gravitational waves from neutron stars: A twenty-year retrospective. Astroparticle Physics, 153, 102880. DOI: https://doi.org/10.1016/j.astropartphys.2023.102880
- Yu, H., Martynov, D., Vitale, S., Evans, M., Shoemaker, D., Barr, B., Hammond, G., Hild, S., Hough, J., Huttner, S., Rowan, S., Sorazu, B., Carbone, L., Freise, A., Mow-Lowry, C., Dooley, K. L., Fulda, P., Grote, H., & Sigg, D. (2018). Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors. Physical Review Letters, 120(14). DOI: https://doi.org/10.1103/physrevlett.120.141102
- Yunes, N., & Siemens, X. (2013). Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays. Deleted Journal, 16(1). DOI: https://doi.org/10.12942/lrr-2013-9
- Zhao, W., & Zhang, Y. (2006). Relic gravitational waves and their detection. Physical Review. D. Particles, Fields, Gravitation, and Cosmology/Physical Review. D, Particles, Fields, Gravitation, and Cosmology, 74(4). DOI:
 - https://doi.org/10.1103/physrevd.74.043503

Received: October 09, 2024 | Revised: November 11, 2024 | Accepted: November 18, 2024