

Technology

Ants' Collective Intelligence What Could We Learn?

Rodney Taw

University of Michigan-Ann Arbor, 500 S. State St., Ann Arbor, MI, 48109, USA
*: All correspondence should be sent to: Dr. Rodney Taw.

*: Author's Contact: Rodney Taw, Ph.D., E-mail: Rodneytaw@aol.com

DOI: https://doi.org/10.15354/si.25.re1131

Funding: No funding source declared.

COI: The author declares no competing interest.

Al Declaration: The author affirms that artificial intelligence did not contribute to the process of preparing the work.

Ants, albeit appearing diminutive and trivial within the broader context of nature, demonstrate an extraordinary capacity for collective problem-solving and exhibit intellect that beyond expectations for individual members of their species. This phenomenon, termed ants' collective intelligence, has elicited attention and appreciation from both experts and enthusiasts. This article examines the complex mechanisms of ants' collective intelligence, highlighting its essential features, ramifications across diverse domains, and the significant insights it can provide to human. Embark on an intriguing exploration of the ant kingdom, where collaboration, communication, and decentralized decision-making coalesce to create a complex system that

Keywords: Ants Collective Intelligence; Decentralized Decision-Making; Collective Problem-Solving; Systematic Insights; Human Development

Science Insights, January 31, 2025; Vol. 46, No. 1, pp.1711-1722.

offers significant lessons for human pursuits.

© 2025 Insights Publisher. All rights reserved.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed by the Insights Publisher.

Introduction

NTS DEMONSTRATE an extraordinary degree of collective intelligence that has captivated scientists and scholars for decades (Shields, 2018). Their capacity to structure intricate societies, coordinate duties proficiently, and devise effective solutions to obstacles offers valuable insights for human society (Smith et al., 2009). Examining the communication techniques, labor distribution, and problem-solving approaches utilized by ant colonies can provide significant insights into team dynamics, leadership frameworks, and deci-

sion-making processes in businesses (Moffett et al., 2021). Furthermore, the intricate utilization of pheromones and decentralized networks by ants may inspire novel methodologies in logistics planning, supply chain management, and catastrophe response (Wang et al., 2009). Understanding how ants utilize their collective intelligence helps guide ideas for enhancing teamwork, fostering collaboration, and attaining common objectives in various professional environments (Bian & Tian, 2022; Dorigo et al., 1999). Ultimately, by leveraging the insights of these modest creatures, we can substantially improve our collective

intellect as humans.

Key Characteristics of Ants Collective Intelligence

Decentralized Decision-Making

Ant colonies operate without a central authority figure dictating orders. Instead, individual ants rely on simple interactions with their immediate neighbors to make decisions that benefit the colony as a whole (Gordon, 2016). This decentralized approach allows for efficient problem-solving and adaptability to changing circumstances (Dorigo et al., 2000).

A primary aspect influencing the decentralized decision-making of ants is their utilization of pheromones (Canciani et al., 2019). Ants convey information to one another using chemical signals called pheromones, which they leave on the ground while traversing their environment (Attygalle & Morgan, 1985). Upon discovering a food supply, an ant will deposit a pheromone trail for other ants to trace (Karnish, 2024). The greater the number of ants traversing the route, the more potent the pheromone fragrance, resulting in an increased probability of additional ants participating (Oldham et al., 1994). This beneficial feedback loop enables the entire colony to rapidly identify and utilize food sources.

A crucial element of decentralized decision-making in ants is their capacity to adapt to fluctuating environmental conditions (Gordon, 2007). Ants may modify their behavior instantaneously according to the information obtained from their environment (Dussutour & Nicolis, 2013). For instance, when a procession of ants hits an impediment, like a fallen branch, they collaboratively seek an alternative pathway instead of awaiting directives from a central authority (Gordon, 2016; Parry & Morgan, 1979). This adaptability guarantees the colony's continued effective operation despite unforeseen problems.

Additionally, ants demonstrate a type of distributed problem-solving referred to as swarm intelligence (Johnson, 2009). When confronted with a complex task, such as locating the quickest route to a food source or constructing a nest, ants can collaboratively resolve the issue by decomposing it into smaller, manageable sub-tasks (Kube & Bonabeau, 2000). Each ant concentrates on a particular facet of the issue and conveys information to its neighbors via pheromone trails, enabling the entire colony to collaborate cohesively towards a shared objective (Deeti et al., 2024).

The decentralized decision-making in ants is essential for optimizing resource allocation. Ants consistently confront the issue of equilibrating their energy consumption with the necessity to nourish and safeguard the colony (Wang et al., 2009). Ants efficiently use their resources to enhance the colony's overall fitness by making decisions informed by local information, such as food availability and predator presence (Detrain & Deneubourg, 2002; Dussutour & Nicolis, 2013). This produces a more sustainable and resilient system capable of enduring external stressors.

The decentralized decision-making of ants provides significant insights for human communities, in addition to its practical advantages (Dussutour & Nicolis, 2013). Researchers have developed methods and models applicable to several domains,

including optimization, robotics, and computer science, by examining the factors that govern ant behavior (Bonabeau et al., 2000; Detrain & Deneubourg, 2002; Dorigo et al., 2000; Johnson, 2009). The efficacy of ant colonies in addressing intricate problems via decentralized decision-making exemplifies how distributed systems can surpass centralized systems in some contexts.

Communication Methods

Ants communicate primarily through chemical signals called pheromones (Wang et al., 2009). These chemical messages help coordinate activities such as foraging, nest maintenance, and defense. By following pheromone trails laid down by other ants, colony members can efficiently share information and coordinate their efforts (Czaczkes et al., 2014).

Ants emit chemical signals known as pheromones to convey information and orient themselves within their surroundings (Salman et al., 2024). Ants convey information regarding food sources, nest sites, and potential hazards to other colony members by depositing pheromone trails on the ground. Pheromone trails assist ants in coordinating foraging activity and identifying the most effective pathways to food sources (Attygalle & Morgan, 1985).

Besides pheromones, ants utilize tactile communication to transmit information to fellow colony members (Robinson et al., 2008). Ants convey information via physical interaction, including contacting or tapping one another with their antennae (Jackson & Ratnieks, 2006). This tactile communication enables ants to transmit intricate messages, like the whereabouts of a particular food source or the existence of environmental threats. Ants utilize tactile communication to swiftly and efficiently convey crucial information to their colony members (Milius, 2000).

Ants also utilize sound signals as a means of communication. Certain ant species can generate stridulations, which are vibrations produced by the friction of body components (Hickling & Brown, 2000). These auditory signals can provide information on threats, food availability, or the presence of intruders within the colony. Ants utilize auditory signals to communicate across extended distances and notify fellow colony members of significant occurrences in their surroundings (Milius, 2000).

Ants utilize visual signals for intercommunication. Certain ant species possess intricate visual communication systems, including body position and color cues to transmit information (Cammaerts, 2012; Narendra et al., 2016). Ants may elevate their bodies in a protective stance to convey aggressiveness towards intruders or exhibit vibrant colors to signify their rank within the colony hierarchy. Visual cues are crucial for coordinating ant operations and sustaining social cohesion within the colony (Gibbons, 1990).

Ants employ an exceptional mode of communication through collaborative decision-making. Ant colonies demonstrate emergent behavior, wherein individual ants adhere to basic norms to collaboratively address intricate challenges and make decisions that benefit the entire colony (Dorigo et al., 2000). Ants utilize decentralized communication and self-organization to adapt to fluctuating environmental conditions, allocate re-

sources effectively, and address complex challenges such as constructing elaborate nests or organizing extensive foraging operations (Moffett et al., 2021).

Division of Labor

Ant colonies exhibit a sophisticated division of labor, with different tasks assigned to specific groups of ants based on their age, size, and specialized abilities (Canciani et al., 2019). This division ensures that all essential functions, from caring for the young to foraging for food, are carried out effectively, contributing to the overall success of the colony.

In an ant colony, various castes of ants exist, each with distinct duties and responsibilities (Herbers, 1979; Shields, 2018). The queen ant is tasked with egg-laying and reproduction, whilst the worker ants are charged with foraging for food, nurturing the offspring, upkeeping the nest, and protecting the colony (Gordon, 2007). Soldier ants are tasked with safeguarding the colony from predators and various hazards. This allocation of labor guarantees that all essential jobs are performed efficiently and effectively.

The labor division within an ant colony is not static and may fluctuate according to the colony's requirements (Liao et al., 2023). For instance, if a colony experiences a food scarcity, additional ants may be designated to foraging responsibilities to secure a sufficient food supply (Villet, 1990). Ants communicate by pheromones, facilitating coordination of operations and adaptation of labor division as required.

The labor division of ant colonies is distinctly specialized, with each ant doing a particular task that enhances the colony's overall operation (Ant, 2023). This specialization enables ants to optimize their efficiency and productivity, as each ant is adept at its designated function (Wilson & Hölldobler, 2005). Worker ants possess unique mandibles and digestive systems that enable them to effectively process and transfer food to the colony.

The specialization of tasks within ant colonies facilitates the acquisition of knowledge and experience over time (Muscedere, 2016). Ants execute their responsibilities, acquiring and honing their abilities, subsequently transmitting this information to subsequent generations (Stickland et al., 1993). This collective intelligence enables ant colonies to adapt to fluctuating environmental conditions and enhances their survival prospects.

Ants demonstrate remarkable collective intelligence through their specialization in tasks (Arcaute et al., 2008). Army ants may construct live bridges with their bodies to traverse obstacles and access new food sources (Ichimura et al., 2014). This behavior necessitates coordination and collaboration among the ants, exemplifying the efficacy of their collective intellect.

The labor division within ant colonies is both efficient and resilient. When a worker ant is lost or damaged, the colony compensates by redistributing tasks among other ants. This adaptability enables ant colonies to respond to unforeseen circumstances while sustaining their output and survival.

Lessons for Problem-Solving and Decision-Making

Adaptability in Dynamic Environments

One of the key lessons we can learn from ants' collective intelligence is the importance of adaptability in dynamic environments (Bonabeau & Th éaulaz, 2000). By responding to changes in their surroundings through decentralized decision-making and flexible communication, ants are able to thrive in a variety of conditions.

Any organism's or organization's success depends heavily on its ability to adapt to dynamic environments. Social insects like ants, whose collective intelligence enables them to navigate and flourish in ever-changing environments, are a prime example of this (Bonabeau, 1998). Ant colonies are remarkably adaptive when faced with obstacles including a lack of food, predatory dangers, and weather variations (Bonabeau & Théraulaz, 2000; Parry & Morgan, 1979). The collective intelligence that results from the interactions between individual ants is what gives them the capacity to swiftly modify their actions and decision-making procedures in response to environmental inputs.

Ant colonies decentralized organizational structure is one of the main elements that contribute to their adaptability. Ant colonies function as decentralized systems without a single ant in authority, in contrast to hierarchical corporations where decisions are made by a small number of people at the top (Gordon, 2007; Smith et al., 2009). Increased flexibility and adaptability in reaction to environmental changes are made possible by this distributed decision-making process (Heflebower, 1960; Parker & Zhang, 2009). Ants can use local information to inform their judgments, such as the presence of food supplies or the location of predators. They can then use chemical signals to alert the rest of the colony of their decisions.

Ant colonies' capacity to swiftly pick up new skills and adjust their behavior in response to prior experiences is another crucial component of their flexibility (Detrain & Deneubourg, 2002; Robinson, 1992). Ants may learn from their mistakes and modify their actions by going through a process of trial and error. When a troop of ants comes across a new impediment in their path, for instance, they will immediately try out several tactics to get around it (Müller & Wehner, 1988). If a particular tactic works, they will keep it in mind and apply it in future circumstances. Ant colonies are able to respond to shifting environmental conditions by continuously increasing their efficacy and efficiency because of this adaptive learning process (Ramos et al., 2007).

Ant colonies' capacity for cooperation and communication also contributes to their increased adaptability. Ants may communicate about the location of food supplies, the presence of predators, and other significant environmental cues by using chemical signals called pheromones (Kolay et al., 2020; Salman et al., 2024). Ants are able to coordinate their actions and cooperate to achieve shared objectives thanks to this communication. Ant colonies can complete activities that would be hard for individual ants to complete on their own by cooperating with one another (Hölldobler, 1978).

Ant colonies' capacity for self-organization and activity regulation is another example of their adaptation (Jackson & Ratnieks, 2006). Ants can naturally divide themselves into functional groups according to the tasks that need to be completed without the need for central management or oversight (Shields,

1713

2018). Ants, for instance, will promptly organize a foraging party to collect and carry the food back to the colony once they have found a food source. Ants will also cooperate to defend their nest and shield the queen and young larvae from any threats they see. Ant colonies can effectively distribute resources and quickly adjust to changing conditions because of this self-organizing behavior (Shik et al., 2014; Wilson & Hölldobler, 2005).

Ant colonies are very genetically diverse, which helps them adapt to dynamic environments, in addition to their decentralized and self-organizing structure. There are frequently several genetically unique ant subpopulations inside a colony, each with unique behavioral characteristics and capacities (Moffett, 2012). When faced with obstacles or possibilities in their surroundings, ant colonies can advantage over the strengths of various individuals thanks to this diversity. For instance, certain ants might be better at hunting for food, while others might be better at protecting the colony against intruders (Detrain & Deneubourg, 2002). Ants can maximize their collective intelligence and swiftly adjust to shifting environmental conditions by utilizing the genetic diversity inside their colony.

Ant colonies' ability to modify their foraging tactics in response to the availability of food sources is another example of their versatility (Detrain & Deneubourg, 2002). Ants will change their hunting habits to look for alternate food sources when food is limited, such as scavenging dead insects or consuming plant sap. In a similar way, ants will increase the effectiveness of food collection and storage when food is plentiful by optimizing their foraging routes and communication networks (Karnish, 2024; Mailleux et al., 2006). Ant colonies can endure and flourish in a variety of environmental settings, including deserts, woods, and urban environments, thanks to their adaptable foraging techniques.

Moreover, ant colonies' ability to adapt extends beyond how they react to both internal and exterior obstacles. Ant colonies can also modify their work division and social structures in response to environmental changes. For instance, to lessen competition for resources and lower the dangers of disease and predation, a colony may divide into several satellite nests once it reaches a particular size (Heinze et al., 1994; Wilson & Nowak, 2014). Ants can increase their territorial reach and adjust to changing environmental conditions thanks to the colony's decentralization into smaller parts.

Optimal Resource Allocation

Ant colonies excel at allocating resources efficiently, ensuring that tasks are prioritized based on the immediate needs of the colony (Detrain & Deneubourg, 2002). This approach to resource management can serve as a valuable lesson for human organizations looking to optimize their operations and achieve better outcomes with limited resources.

There are different castes within ant colonies, and each has distinct duties. For instance, worker ants are in charge of building and maintaining the nest, caring for the young, and foraging for food (Herbers, 1979; Shik et al., 2014). Each ant's age, size, and physical capabilities are considered while allocating jobs. Ant colonies can increase productivity and optimize resource allocation by allocating jobs in this way.

Ants employ pheromones as one of the primary means of resource allocation. Ants can communicate with one another by creating pheromone trails that direct other ants to possible nesting locations or food sources (Kolay et al., 2020). Ants can modify their resource allocation based on the strength and length of the pheromone trail, which can reveal the type and number of resources available (Jackson & Ratnieks, 2006). Ants can effectively distribute resources and adjust to shifting environmental conditions thanks to this communication mechanism.

The division of labor is a crucial component of resource allocation in ant colonies. Ants are able to identify and play to each member's strengths, and different activities call for varied talents and abilities (Liao et al., 2023). For instance, some ants might be more adept at gathering food, while others would be better at raising their young. Ant colonies are able to guarantee that tasks will be finished successfully and efficiently by allocating labor in this manner.

Ant colonies also demonstrate a great level of adaptability in how they distribute their resources. Ants can swiftly adjust and reallocate resources to meet the changing demands, for instance, if a food source runs out or a nesting site is threatened (Shik et al., 2014). This adaptability guarantees ant colonies' survival in the face of shifting conditions and enables them to flourish in a range of environments.

Applications in Technology and Engineering

Swarm Robotics

Inspired by the collective behavior of ants, researchers have developed swarm robotics systems that mimic the coordination and adaptability seen in ant colonies (Yogeswaran & Ponnambalam, 2010). These robotic systems can be applied in various fields, including search and rescue missions, environmental monitoring, and industrial automation.

To comprehend the relationship between swarm robotics and the collective intelligence of ants, it is essential to identify the fundamental traits that contribute to ants' efficacy as collaborative workers (Bian & Tian, 2022; Johnson, 2009). Ant colonies exhibit remarkable organization, with each ant assigned a distinct task in the colony's general operation. Ants coordinate their actions and make collective decisions through basic communication methods, including pheromone trails and tactile contacts (Canciani et al., 2019). This decentralized control system enables ants to swiftly adjust to fluctuating environmental variables and execute intricate tasks effectively.

In swarm robotics, individual robots are designed to interact and collaborate to accomplish a shared goal. By adhering to basic principles and engaging with their neighbors, robot swarms can demonstrate emergent behaviors that replicate the collective intelligence of ants (Yogeswaran & Ponnambalam, 2009). For instance, robotic swarms possess the capability to self-organize, adapt to impediments, and optimize their movements utilizing localized information from their environment (Bian & Tian, 2022; Johnson, 2009). This decentralized control method enables robot swarms to be resilient, adaptable, and scalable, rendering them ideal for tasks necessitating coordination and collaboration across numerous agents.

A primary advantage of swarm robotics, inspired by the

collective intelligence of ants, is the capacity to do intricate tasks that individual robots cannot accomplish independently (Navarro & Matía, 2012; Yogeswaran & Ponnambalam, 2009). Collaboratively, robot swarms can enhance their sensory capacities, allocate tasks among members, and efficiently cover bigger regions. Swarm robots are well suited for applications including search and rescue operations, environmental surveillance, and warehouse automation, where tasks must be performed concurrently and in a decentralized fashion (Firthous & Kumar, 2020).

Nonetheless, problems exist in the implementation of swarm robotics inspired by the collective intelligence of ants. A primary restriction is the challenge of developing algorithms that can scale to several robots while ensuring robustness and efficiency (Chamanbaz et al., 2017; Yogeswaran & Ponnambalam, 2010). As the quantity of robots in a swarm escalates, the intricacy of their interactions amplifies, presenting a problem for regulating their collective behavior. Furthermore, the necessity for efficient communication and coordination methods among robots may hinder the attainment of optimal performance in swarm robotics systems.

Notwithstanding these hurdles, the prospective advantages of swarm robotics, influenced by the collective intelligence of ants, are substantial. Utilizing the principles of self-organization, decentralized control, and emergent behaviors, robot swarms can demonstrate adaptive and intelligent behaviors that exceed the capabilities of individual robots (Chamanbaz et al., 2017). Ongoing research and development in swarm robotics presents significant potential to transform various applications in robotics and automation. Swarm robotics, inspired by the extraordinary collaborative capabilities of ants, is an innovative method for developing autonomous systems capable of addressing intricate tasks in dynamic and unpredictable settings.

Network Optimization

The principles of ants' collective intelligence have also found applications in network optimization algorithms, where multiple agents work together to solve complex problems efficiently (Sim & Sun, 2003). By emulating the decentralized decision-making and communication strategies of ants, these algorithms can improve routing, scheduling, and resource allocation in networks.

Network optimization is essential in contemporary civilization, facilitating more effective communication and resource distribution across diverse systems (Dandan & Hongxin, 2014; Dorigo et al., 2000). An intriguing method for network optimization is derived from the collective intelligence exhibited by ants. Ants exhibit a notable capacity for quickly navigating and identifying the ideal path to food sources, even within intricate and dynamic environments (Dussutour & Nicolis, 2013; Sim & Sun, 2003). Researchers have developed algorithms and tactics to optimize network flow and routing by analyzing and replicating ant behavior (Sim & Sun, 2003).

Ant colony optimization (ACO) is a widely utilized technique derived from the foraging behavior of ants (Dorigo et al., 1999; Sim & Sun, 2003). In ACO, artificial ants are utilized to traverse the network and identify the most efficient pathways between nodes. While navigating the network, ants excrete pheromones along the paths they follow. Subsequent ants can then trace these pheromone trails, resulting in the identification

of shorter and more efficient routes. Over time, the pheromone trails are strengthened on the shorter routes, leading to a self-organizing and self-optimizing network (Berger et al., 2006Narzt et al., 2010).

Stigmergy, denoting indirect communication via environmental manipulation, is fundamental to ant colony optimization. This decentralized communication enables ants to collaboratively address intricate challenges without a single coordinator (Dorigo et al., 2000). In network optimization, ACO algorithms facilitate decentralized and efficient communication and information exchange across nodes.

The primary advantages of employing ant-inspired algorithms for network optimization are their capacity to adapt to fluctuating conditions and limitations. As the network topology changes or new nodes are introduced, the ACO algorithm may swiftly reorganize the routing patterns to maintain optimal performance (Chowdhury et al., 2008; Sim & Sun, 2003). This adaptability is essential in dynamic environments where conventional optimization methods may falter in response to changes.

A further advantage of employing ant-inspired algorithms for network optimization is their scalability. Ant colonies can resolve intricate problems with thousands of members while sustaining effective and resilient communication (Dorigo et al., 1999). ACO algorithms can effectively manage extensive networks comprising thousands of nodes and edges, rendering them suitable for optimizing intricate systems like transportation networks, communication networks, and supply chains (Raouf & Askr, 2019).

Besides their scalability and adaptability, ant-inspired algorithms provide a degree of robustness and fault tolerance that is essential in network optimization. Ant colonies may navigate barriers and identify alternative pathways when faced with disturbances or failures (Asadinia et al., 2010). Likewise, ACO algorithms can swiftly adjust routing patterns to circumvent congestion or network faults, guaranteeing the uninterrupted functionality of the network (Pavani & Waldman, 2006).

A primary difficulty in network optimization is the balance between exploration and exploitation. Ant colony optimization reconciles these two conflicting objectives by employing pheromone evaporation and the exploration-exploitation trade-off mechanism (Dorigo et al., 2007). ACO algorithms continually seek superior solutions by progressively diminishing pheromone levels on suboptimal paths and encouraging the discovery of novel routes, hence avoiding entrapment in local optima.

The efficacy of ant-inspired algorithms in network optimization has resulted in their extensive implementation across many industries and applications. ACO algorithms have been employed to optimize routing and scheduling in transportation networks, better resource allocation in cloud computing systems, and improve communication protocols in wireless networks (Abbas & Fan, 2018; Gao et al., 2007; Sim et al., 2017). Utilizing the collective intelligence of ants, researchers and engineers have devised creative solutions that markedly enhance the efficiency and performance of networked systems.

Thus, network optimization derived from the collective intelligence of ants presents a robust and adaptable method for

addressing intricate optimization challenges across diverse systems. Researchers have created algorithms that are scalable, flexible, and robust by mimicking the decentralized and self-organizing behavior of ants. Ant-inspired algorithms have been effectively utilized in many network optimization challenges, resulting in substantial enhancements in efficiency, performance, and reliability. As technology progresses and networks get more intricate, insights derived from the collective intelligence of ants will remain vital in influencing the future of network optimization.

Implications for Organizational Behavior and Leadership

Collaborative Teamwork Models

Ants demonstrate the power of teamwork through division of labor and collaboration. Organizations can learn from this by fostering a culture of teamwork where individuals with diverse skills work together towards common goals.

The division of labor among various colony members is one of the main characteristics of the collaborative teamwork model of ant collective intelligence. Whether it's gathering food, tending to the young, or defending the colony from predators, each ant has a distinct function to do within the group (Gordon, 2016). Ants are able to complete their work more effectively and productively when they divide labor in this fashion, which eventually benefits the colony as a whole.

Communication is a key component in Ants' collaborative teamwork model of collective intelligence (Smith et al., 2009). Pheromones, touch, and even sound are some of the ways that ants can interact with one another. Ants may coordinate their activities and reach decisions as a group by cooperating and exchanging information (Kolay et al., 2020). Ants' ability to communicate is essential to the colony's success because it enables them to quickly adjust to shifting conditions and overcome new obstacles.

High levels of collaboration among colony members are also necessary for the Collaborative Teamwork Model of Ants Collective Intelligence to function. Ants are renowned for being unselfish enough to prioritize the requirements of the colony over their own personal interests, and this trait is crucial to the group's overall prosperity (Gordon, 2007; Wilson & Hölldobler, 2005). Ants are able to overcome challenges and accomplish their shared objectives by cooperating and helping one another.

The ability of ants to tackle complicated issues by working together is among the most remarkable features of the Collaborative Teamwork Model of Ants Collective Intelligence. Ants, for instance, will cooperate to construct bridges or tunnels that will enable them to get over a big obstruction in their path and carry on with their journey (Kube & Bonabeau, 2000; Reid et al., 2015). An important factor in the ants' success as a species is their capacity for collective problem-solving and creative thought.

Researchers have also adapted the Collaborative Teamwork Model of Ants Collective Intelligence to human society, comparing human organizations to ant colonies. Humans can gain important insights into the value of cooperation, teamwork, and communication in accomplishing shared objectives by see-

ing how ants collaborate and succeed (Anderson & Franks, 2003; Wang et al., 2009). Human enterprises can increase production, efficiency, and success by using some of the ideas from the Collaborative Teamwork Model of Ants Collective Intelligence.

Leader-Follower Dynamics

Ant colonies exhibit decentralized leadership where different ants take on leadership roles as needed (Collignon & Detrain, 2009). This can inspire organizations to adopt more flexible leadership structures that empower employees to take initiative and lead when necessary.

The presence of a queen ant, who functions as the central authority and decision-maker for the colony, is one of the key components of leader-follower dynamics in ant colonies (Dorigo et al., 2000; Heinze et al., 1994). The queen is accountable for the colony's ultimate direction, laying eggs, and reproduction. Worker ants, which are other ants within the colony, adhere to the queen's directives and execute specific duties to facilitate the colony's overarching objectives.

A distinct hierarchy is established within the worker population, which is based on age and experience (Muscedere, 2016). Within the colony, older ants frequently assume leadership roles, providing guidance to younger ants and demonstrating the most efficient methods of completing duties. The coordination of the colony's activities and the efficient allocation of resources are facilitated by this hierarchical structure.

The division of labor among various ant groups is another critical component of leader-follower dynamics in ant colonies. While some ants are tasked with the responsibility of foraging for food, others are tasked with providing for the queen and her offspring (Wilson & Nowak, 2014). Ants are capable of optimizing their efficiency and productivity by dividing labor in this manner, which ultimately contributes to the colony's success.

Soldier ants, in addition to the queen and worker ants, are specialized ants that are present within the colony. The colony is safeguarded by soldier ants from predators or other ant colonies (Shields, 2018). These ants are highly specialized in their function and collaborate seamlessly to safeguard the colony from damage.

It is crucial to recognize that the dynamics of leader-follower relationships in ant colonies are not fixed or static. Ant colonies are highly adaptable and can modify their strategies and tactics in response to evolving environmental conditions or hazards. This adaptability is a critical factor in the success of ant colonies, as it enables them to flourish in a diverse array of ecosystems and habitats.

Environmental Insights and Sustainability Practices

Efficient Resource Management

Ants efficiently allocate resources within their colonies, minimizing waste and maximizing efficiency. Organizations can apply this principle by implementing sustainable practices that prioritize resource conservation and waste reduction.

Ants' capacity for cooperation and communication is one of the main traits that contribute to their exceptional resource management skills (Diamé et al., 2017). Ants coordinate their

activities with other colony members and exchange information about resources through a sophisticated pheromone system. This enables them to prevent needless duplication of work and utilize resources effectively. Human organizations can increase efficiency and enhance their own resource management procedures by promoting staff collaboration and communication (Satdeve, 2020).

Ants' specialization and division of work are crucial components of their resource management (Arcaute et al., 2008). Because each member of an ant colony takes on a distinct role according to their skills and strengths, the colony as a whole is able to make efficient use of the members' varied skill sets. Human companies can increase productivity and performance by identifying and utilizing each employee's unique abilities and allocating resources as efficiently as possible (Aldhuhoori et al., 2022).

Ants are renowned for their capacity to effectively respond to variations in resource availability and to adjust to shifting environmental conditions (Campos et al., 2000; Gligor et al., 2019). Ant colonies can swiftly modify their resource allocation and foraging tactics in response to outside variables like weather patterns, food availability, and competition from other species. Human managers can increase their capacity to react to shifting market conditions and guarantee the effective use of resources by cultivating a culture of flexibility and adaptability inside their companies.

Ants always aim to reduce waste and increase productivity, making them extremely efficient with energy and resources. Ants, for instance, are known to conserve important resources and lessen their environmental impact by recycling and reusing items wherever possible (Shik et al., 2014). Human organizations can lessen their impact on the environment and increase their long-term viability by embracing a similar philosophy of sustainability and resource conservation.

Ants' capacity for long-term planning and storing excess resources for periods of scarcity is among their most remarkable resource management skills (Chapin et al., 2012; Conway, 1986). Ant colonies can endure times when food is scarce without endangering their health because they may store extra food resources in subterranean chambers. Human organizations can better prepare for unanticipated interruptions and guarantee their continuous performance in the face of uncertainty by putting long-term planning and strategic resource storage methods into operation.

Ecosystem Resilience

Ant colonies are resilient to environmental changes due to their adaptive behaviors. Understanding these mechanisms can inform sustainability practices that enhance ecosystem resilience and mitigate the impact of external disruptions (Habib & Marimuthu, 2017; Ramyar, 2017).

Ants' ability to adapt is a crucial component of their resiliency. Ants are incredibly adaptable in how they organize socially and behave in response to shifting environmental factors. When faced with disruptions like habitat loss, predation, or resource constraint, they can swiftly modify their communication styles, breeding behaviors, and feeding patterns (Gordon, 2016). In order to better manage and recover from environmental prob-

lems, humans can learn from ants by cultivating a comparable resilience in our technological, social, and economic systems.

Ant colonies also show a high level of individual cooperation and support for one another. Ants collaborate in intricate hierarchical structures, frequently putting the needs of the colony ahead of their own. Ants are able to effectively distribute resources, fend off dangers, and bounce back from disturbances because of this altruistic behavior (Moffett, 2012; Shields, 2018). Humans may improve our own resilience by learning from and modeling these cooperative behaviors, which promote cooperation, solidarity, and group problem-solving on a local, national, and international scale.

Ants are also excellent communicators and organizers. They communicate, coordinate, and make decisions as a group via pheromones, tactile cues, and complex chemical messages. Ants can adapt quickly to changing conditions, maximize resource utilization, and remain resilient in the face of uncertainty thanks to this decentralized, bottom-up strategy (Canciani et al., 2019). Humans may improve flexibility, innovation, and adaptability by implementing comparable decentralized, networked architecture in our business, governance, and technology systems.

Ants are also very effective at recycling organic matter, resupplying nutrients to the soil, managing pest populations, and fostering biodiversity in their environments (Dorigo et al., 2000; Middleton & Latty, 2016). Ants support the general resilience and stability of the natural environment by maintaining the productivity and health of their habitats through these ecological services. Ants can teach humans to prioritize conservation, restoration, and sustainable resource management strategies that improve ecosystem resilience and the long-term welfare of all species.

Additionally, ants exhibit tremendous potential for creativity, learning, and problem-solving. Through social learning and trial and error, they are able to modify their foraging techniques, construct intricate structures, traverse difficult terrain, and create original solutions to environmental problems (Arcaute et al., 2008; Chopard & Tomassini, 2018). Humans may use our creative capacity to create resilient technologies, laws, and practices that solve present and future environmental challenges by fostering a culture of experimentation, curiosity, and information sharing.

Conclusion

Ants exhibit a remarkable degree of collective intelligence via their intricate social structures and advanced communication networks. They utilize pheromones for communication, creating trails that direct the colony to food sources or potential dangers. Ants demonstrate a division of labor, with each individual assuming a specific duty determined by its size, age, or physical capabilities. This specialization enables the colony to effectively distribute nutrients and adjust to fluctuating environmental conditions. Moreover, ants possess the ability to collaboratively resolve sophisticated challenges, including the construction of elaborate subterranean tunnels and the orchestration of assaults on larger prey. The decentralized decision-making processes of ants allow for rapid responses to challenges without centralized control, rendering them an intriguing model for examining

Received: November 21, 2024 | Revised: December 19, 2024 | Accepted: December 29, 2024

References

-12-012

Abbas, F., & Fan, P. (2018). Clustering-based reliable low-latency routing scheme using ACO method for vehicular networks. Vehicular Communications, 12, 66–74. DOI: https://doi.org/10.1016/j.vehcom.201

Aldhuhoori, R., Almazrouei, K., Sakhrieh, A., Hazza, M. A., & Alnahhal, M. (2022). The effects of recruitment, selection, and training practices on employee performance in the construction and related industries. Civil Engineering Journal, 8(12), 3831–3841. DOI: https://doi.org/10.28991/cej-2022-08

Anderson, C., & Franks, N. R. (2003). Teamwork in animals, robots, and humans. In Advances in the study of behavior (pp. 1–48). DOI:

https://doi.org/10.1016/s0065-3454(03)33001-3

Ant (Insecta, hymenoptera). (2005). Van Nostrand's Scientific Encyclopedia. DOI:

https://doi.org/10.1002/0471743984. vse0494

Arcaute, E., Christensen, K., Sendova-Franks, A., Dahl, T., Espinosa, A., & Jensen, H. J. (2008). Division of labour in ant colonies in terms of attractive fields. Ecological Complexity, 6(4), 396–402. DOI: https://doi.org/10.1016/j.ecocom.2008.10.001

Asadinia, S., Rafsanjani, N. M. K., & Saeid, N. a. B. (2010). A novel routing algorithm based-on ant colony in Mobile Ad hoc Networks. In 2010 3rd IEEE International Conference on Ubi-Media Computing (pp. 77–82). DOI:

https://doi.org/10.1109/umedia.2010.5543922

Attygalle, A. B., & Morgan, E. D. (1985). Ant Trail Pheromones. In Advances in insect physiology (pp. 1–30). DOI:

https://doi.org/10.1016/s0065-2806(08)60038-7

Berger, T., Sallez, Y., & Taho, C. (2006). Bio-Inspired Approach for Autonomous Routing in FMS. In Manufacturing the Future (pp. 101–124). DOI:

https://doi.org/10.5772/5046

Bian, X., & Tian, J. (2022). The construction of intelligent supply chain system for agricultural products based on improved Ant colony algo-

rithm. Mobile Information Systems, 2022, 1–13. DOI:

https://doi.org/10.1155/2022/564330

Bonabeau, E. (1998). Social insect colonies as complex adaptive systems. Ecosystems, 1(5), 437–443. DOI:

https://doi.org/10.1007/s100219900 038

Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization from social insect behaviour. Nature, 406(6791), 39–42. DOI:

https://doi.org/10.1038/35017500

Bonabeau, E., & Théraulaz, G. (2000). Swarm Smarts. Scientific American, 282(3), 72–79. DOI: https://doi.org/10.1038/scientificamerican0300-72

Cammaerts, M. (2012). The visual perception of the ant Myrmica ruginodis (Hymenoptera: Formicidae). Biologia, 67(6), 1165–1174. DOI:

https://doi.org/10.2478/s11756-012-0112-z

Campos, M., Bonabeau, E., Théraulaz, G., & Deneubourg, J. (2000). Dynamic scheduling and division of labor in social insects. Adaptive Behavior, 8(2), 83–95. DOI: https://doi.org/10.1177/1059712300 00800201

Canciani, M., Arnellos, A., & Moreno, A. (2019). Revising the Superorganism: an organizational approach to complex eusociality. Frontiers in Psychology, 10. DOI: https://doi.org/10.3389/fpsyg.2019.0 2653

Chamanbaz, M., Mateo, D., Zoss, B. M., Tokić, G., Wilhelm, E., Bouffanais, R., & Yue, D. K. P. (2017). Swarm-Enabling technology for Multi-Robot systems. Frontiers in Robotics and Al, 4. DOI: https://doi.org/10.3389/frobt.2017.00

https://doi.org/10.3389/frobt.2017.00 012

Chapin, F. S., Mark, A. F., Mitchell, R. A., & Dickinson, K. J. M. (2012). Design principles for social - ecological transformation toward sustainability: lessons from New Zealand sense of place. Ecosphere, 3(5), 1 - 22. DOI:

https://doi.org/10.1890/es12-00009.

Chopard, B., & Tomassini, M. (2018). The Ant Colony method. In Natural

computing series (pp. 81–96). DOI: https://doi.org/10.1007/978-3-319-93 073-2_5

Chowdhury, N. N. M., Baker, S. M., & Choudhury, E. H. (2008). A new adaptive routing approach based on Ant Colony Optimization (ACO) for Ad hoc Wireless Networks. In 2008 11th International Conference on Computer and Information Technology (Vol. 54, pp. 51–56). DOI: https://doi.org/10.1109/iccitechn.2008.4803126

Collignon, B., & Detrain, C. (2009). Distributed leadership and adaptive decision-making in the antTetramorium caespitum. Proceedings of the Royal Society B Biological Sciences, 277(1685), 1267–1273. DOI:

https://doi.org/10.1098/rspb.2009.1976

Conway, J. R. (1986). The Biology of Honey ants. The American Biology Teacher, 48(6), 335–343. DOI: https://doi.org/10.2307/4448321

Czaczkes, T. J., Grüter, C., & Ratnieks, F. L. (2014). Trail Pheromones: An Integrative view of their role in social insect Colony organization. Annual Review of Entomology, 60(1), 581–599. DOI: https://doi.org/10.1146/annurev-ento-010814-020627

Dandan, N. S., & Hongxin, N. Z. (2014). A routing cooperative selection method based on ant colony optimization algorithm. In International Conference on Cyberspace Technology (CCT 2014) (p. 100 (4)). DOI:

https://doi.org/10.1049/cp.2014.136

Deeti, S., McLean, D. J., Murray, T., & Cheng, K. (2024). Route learning and transport of resources during colony relocation in Australian desert ants. Learning & Behavior. DOI: https://doi.org/10.3758/s13420-024-00652-1

Detrain, C., & Deneubourg, J. (2002). Complexity of environment and parsimony of decision rules in insect societies. Biological Bulletin, 202(3), 268–274. DOI:

https://doi.org/10.2307/1543478

Diamé, L., Rey, J., Vayssières, J., Grechi, I., Chailleux, A., & Diarra, K. (2017). Ants: major functional elements in fruit Agro-Ecosystems and biological control agents. Sustainability, 10(1), 23. DOI:

https://doi.org/10.3390/su10010023

Dorigo, M., Birattari, M., & Stutzle, T. (2007). Ant Colony Optimization. In Chapman and Hall/CRC eBooks (pp. 417–430). DOI:

https://doi.org/10.1201/9781420010 749-33

Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000). Ant algorithms and stigmergy. Future Generation Computer Systems, 16(8), 851–871.

https://doi.org/10.1016/s0167-739x(00)00042-x

Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5(2), 137–172. DOI: https://doi.org/10.1162/1064546995 68728

Dussutour, A., & Nicolis, S. C. (2013). Flexibility in collective decision-making by ant colonies: Tracking food across space and time. Chaos Solitons & Fractals, 50, 32–38. DOI:

https://doi.org/10.1016/j.chaos.2013.02.004

Firthous, M. a. A., & Kumar, R. (2020). Multiple oriented robots for search and rescue operations. IOP Conference Series Materials Science and Engineering, 912(3), 032023. DOI:

https://doi.org/10.1088/1757-899x/9 12/3/032023

Gao, Z., Guo, Q., & Wang, P. (2007). An adaptive routing based on an improved ant colony optimization in LEO satellite networks. International Conference on Machine Learning and Cybernetics, 1041–1044. DOI: https://doi.org/10.1109/icmlc.2007.4

Gibbons, J. W. (1990). Life history and ecology of the slider turtle. Choice Reviews Online, 28(04), 28–2131. DOI:

https://doi.org/10.5860/choice.28-21 31

Gligor, D., Gligor, N., Holcomb, M., & Bozkurt, S. (2019). Distinguishing between the concepts of supply chain agility and resilience. The International Journal of Logistics Management, 30(2), 467–487. DOI: https://doi.org/10.1108/ijlm-10-2017-0259

Gordon, D. M. (2007). Control without hierarchy. Nature, 446(7132), 143. DOI:

https://doi.org/10.1038/446143a

Gordon, D. M. (2016). Collective wisdom of ants. Scientific American, 314(2), 44–47. DOI:

https://doi.org/10.1038/scientificamerican0216-44

Habib, S. J., & Marimuthu, P. N. (2017). A bio-inspired tool for managing resilience in enterprise networks with embedded intelligent formulation. Expert Systems, 35(1). DOI:

https://doi.org/10.1111/exsy.12208

Heflebower, R. B. (1960). Observations on decentralization in large enterprises. Journal of Industrial Economics, 9(1), 7. DOI: https://doi.org/10.2307/2097464

Heinze, J., Hölldobler, B., & Peeters, C. (1994). Conflict and cooperation in ant societies. The Science of Nature, 81(11), 489–497. DOI: https://doi.org/10.1007/bf01132680

Herbers, J. M. (1979). Caste-biased polyethism in a mound-building ant species. The American Midland Naturalist, 101(1), 69. DOI: https://doi.org/10.2307/2424902

Hickling, R., & Brown, R. L. (2000). Analysis of acoustic communication by ants. The Journal of the Acoustical Society of America, 108(4), 1920–1929. DOI:

https://doi.org/10.1121/1.1290515

Hölldobler, B. (1978). Ethological aspects of chemical communication in ants. In Advances in the study of behavior (pp. 75–115). DOI: https://doi.org/10.1016/s0065-3454(08)60132-1

Ichimura, T., Uemoto, T., Hara, A., & Mackin, K. J. (2014). Emergence of altruism behavior in army ant-based social evolutionary system. SpringerPlus, 3(1). DOI: https://doi.org/10.1186/2193-1801-3-712

Jackson, D. E., & Ratnieks, F. L. (2006). Communication in ants. Current Biology, 16(15), R570–R574. DOI:

https://doi.org/10.1016/j.cub.2006.07

Johnson, J. T. (2009). A Brief Investigation of Swarm Theory and Applications. In Volume 2: 29th Computers and Information in Engineering Conference (pp. 209–218). DOI: https://doi.org/10.1115/detc2009-865

Karnish, A. (2024). Seed Dispersal by Ants: A primer. International Journal of Plant Sciences, 185(5), 403–411. DOI:

https://doi.org/10.1086/730787

Kolay, S., Boulay, R., & D'Ettorre, P. (2020). Regulation of ant Foraging: A review of the role of information use and personality. Frontiers in Psychology, 11. DOI:

https://doi.org/10.3389/fpsyg.2020.0 0734

Kube, C., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1–2), 85–101. DOI: https://doi.org/10.1016/s0921-8890(99)00066-4

Liao, R., Li, S., Wu, C., Zhang, X., Jiang, C., & Li, R. (2023). Modeling and simulation of extended ant colony labor division for benefit distribution of the all-for-one tourism supply chain with front and back decoupling. Frontiers in Bioengineering and Biotechnology, 11. DOI: https://doi.org/10.3389/fbioe.2023.9

Mailleux, A., Detrain, C., & Deneubourg, J. (2006). Starvation drives a threshold triggering communication. Journal of Experimental Biology, 209(21), 4224–4229. DOI: https://doi.org/10.1242/jeb.02461

Middleton, E. J. T., & Latty, T. (2016). Resilience in social insect infrastructure systems. Journal of the Royal Society Interface, 13(116), 20151022. DOI:

https://doi.org/10.1098/rsif.2015.102

Milius, S. (2000). When ants squeak: Eavesdropping on lesser-known bulletins from the hill. Science News, 157(6), 92 - 94. DOI:

https://doi.org/10.2307/4012245

Moffett, M. W. (2012). Supercolonies of billions in an invasive ant: What is a society? Behavioral Ecology, 23(5), 925–933. DOI:

https://doi.org/10.1093/beheco/ars043

Moffett, M. W., Garnier, S., Eisenhardt, K. M., Furr, N. R., Warglien, M., Sartoris, C., Ocasio, W., Knudsen, T., Bach, L. A., & Offenberg, J. (2021). Ant colonies: building complex organizations with minuscule brains and no leaders. Journal of Organization Design, 10(1), 55–74. DOI:

https://doi.org/10.1007/s41469-021-00093-4

Müller, M., & Wehner, R. (1988). Path integration in desert ants, Cataglyphis fortis. Proceedings of the National Academy of Sciences, 85(14), 5287–5290. DOI: https://doi.org/10.1073/pnas.85.14.5

287

Muscedere, M. (2016). Pheidole Ants: Sociobiology of a highly diverse genus. In Elsevier eBooks (pp. 149–158). DOI:

https://doi.org/10.1016/b978-0-12-80 9633-8.01208-5

Narendra, A., Ramirez-Esquivel, F., & Ribi, W. A. (2016). Compound eye and ocellar structure for walking and flying modes of locomotion in the Australian ant, Camponotus consobrinus. Scientific Reports, 6(1). DOI:

https://doi.org/10.1038/srep22331

Narzt, W., Wilflingseder, U., Pomberger, G., Kolb, D., & HöRtner, H. (2010). Self-organising congestion evasion strategies using ant-based pheromones. IET Intelligent Transport Systems, 4(1), 93–102. DOI:

https://doi.org/10.1049/iet-its.2009.0 022

Navarro, I., & Matía, F. (2012). An introduction to swarm robotics. ISRN Robotics, 2013, 1–10. DOI: https://doi.org/10.5402/2013/608164

Oldham, N. J., Morgan, E. D., Gobin, B., & Billen, J. (1994). First identification of a trail pheromone of an army ant (Aenictus species). Experientia, 50(8), 763–765. DOI: https://doi.org/10.1007/bf01919378

Parker, C., & Zhang, N. H. (2009). Cooperative Decision-Making in decentralized Multiple-Robot Systems: The Best-of-N problem. IEEE/ASME Transactions on Mechatronics, 14(2), 240–251. DOI: https://doi.org/10.1109/tmech.2009.2 014370

Parry, K., & Morgan, E. D. (1979). Pheromones of ants: a review. Physiological Entomology, 4(2), 161–189. DOI:

https://doi.org/10.1111/j.1365-3032.1 979.tb00193.x

Pavani, G. S., & Waldman, H. (2006). Traffic Engineering and Restoration in Optical Packet Switching Networks by means of Ant Colony Optimization. In 2006 3rd International Conference on Broadband Communications, Networks and Systems (pp. 1–10). DOI:

https://doi.org/10.1109/broadnets.20 06.4374329

Ramos, V., Fernandes, C., Rosa, A. C., & Abraham, A. (2007). Computa-

tional chemotaxis in ants and bacteria over dynamic environments. In 2007 IEEE Congress on Evolutionary Computation (pp. 1109–1117). DOI:

https://doi.org/10.1109/cec.2007.442 4594

Ramyar, R. (2017). Green infrastructure contribution for climate change adaptation in urban landscape context. Applied Ecology and Environmental Research, 15(3), 1193–1209. DOI:

https://doi.org/10.15666/aeer/1503 11931209

Raouf, O. A., & Askr, H. (2019). ACOSDN-Ant Colony Optimization Algorithm for Dynamic Routing In Software Defined Networking. In 2019 14th International Conference on Computer Engineering and Systems (ICCES). DOI:

https://doi.org/10.1109/icces48960.2 019.9068162

Reid, C. R., Lutz, M. J., Powell, S., Kao, A. B., Couzin, I. D., & Garnier, S. (2015). Army ants dynamically adjust living bridges in response to a cost–benefit trade-off. Proceedings of the National Academy of Sciences, 112(49), 15113–15118. DOI: https://doi.org/10.1073/pnas.151224

Robinson, E. J. H., Green, K. E., Jenner, E. A., Holcombe, M., & Ratnieks, F. L. W. (2008). Decay rates of attractive and repellent pheromones in an ant foraging trail network. Insectes Sociaux, 55(3), 246–251. DOI:

https://doi.org/10.1007/s00040-008-0994-5

Robinson, G. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology, 37(1), 637–665. DOI:

https://doi.org/10.1146/annurev.ento. 37.1.637

Salman, M., Ramos, D. G., & Birattari, M. (2024). Automatic design of stigmergy-based behaviours for robot swarms. Communications Engineering, 3(1). DOI:

https://doi.org/10.1038/s44172-024-00175-7

Satdeve, S. (2020). Human Resource Management: Service Sector vs Manufacturing Sector. Journal of Investment and Management, 9(4), 115. DOI:

https://doi.org/10.11648/j.jim.202009 04.14

Shields, V. D. (2018). Introductory

chapter: The complex world of Ants. In InTech eBooks. DOI: https://doi.org/10.5772/intechopen.8

Shik, J. Z., Santos, J. C., Seal, J. N., Kay, A., Mueller, U. G., & Kaspari, M. (2014). Metabolism and the rise of fungus cultivation by ants. The American Naturalist, 184(3), 364–373. DOI:

https://doi.org/10.1086/677296

0387

17391

Sim, N. K. M., & Sun, N. W. H. (2003). Ant colony optimization for routing and load-balancing: survey and new directions. IEEE Transactions on Systems Man and Cybernetics - Part a Systems and Humans, 33(5), 560–572. DOI: https://doi.org/10.1109/tsmca.2003.8

Sim, Y., Lee, S., & Lee, S. (2017). Function-Oriented networking and On-Demand routing system in network using ANT Colony optimization algorithm. Symmetry, 9(11), 272. DOI:

https://doi.org/10.3390/sym9110272

Smith, C. R., Dolezal, A., Eliyahu, D., Holbrook, C. T., & Gadau, J. (2009). Ants (Formicidae): Models for Social Complexity. Cold Spring Harbor Protocols, 2009(7), pdb.emo125. DOI:

https://doi.org/10.1101/pdb.emo125

Stickland, T. R., Tofts, C., & Franks, N. R. (1993). Algorithms for ant foraging. The Science of Nature, 80(9), 427–430. DOI:

https://doi.org/10.1007/bf01168341

Villet, M. H. (1990). Division of labour in the Matabele ant Megaponera foetens (Fabr.) (Hymenoptera Formicidae). Ethology Ecology & Evolution, 2(4), 397–417. DOI:

https://doi.org/10.1080/08927014.19 90.9525400

Wang, L., Tang, D., Yuan, W., Gu, W., & Tang, D. (2009). Pheromone-Based coordination and control for task allocation. International Conference on Information Engineering and Computer Science, 1–4. DOI:

https://doi.org/10.1109/iciecs.2009.5 365803

Wilson, E. O., & Hölldobler, B. (2005). Eusociality: Origin and consequences. Proceedings of the National Academy of Sciences, 102(38), 13367–13371. DOI:

https://doi.org/10.1073/pnas.0505858102

Wilson, E. O., & Nowak, M. A. (2014). Natural selection drives the evolution of ant life cycles. Proceedings of the National Academy of Sciences, 111(35), 12585–12590. DOI: https://doi.org/10.1073/pnas.1405550111

Yogeswaran, M., & Ponnambalam, S. (2010). Swarm Robotics: An Extensive Research review. In Sciyo eBooks. DOI: https://doi.org/10.5772/10361

11ttp3://doi.org/10:3772/10301

Yogeswaran, M., & Ponnambalam, S.

G. (2009). An extensive review of research in swarm robotics. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). DOI:

https://doi.org/10.1109/nabic.2009.5 393617