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Brain-to-Al adaptive feedback systems refer to a class of technologies in which neurophysio-
logical signals from human brains are used in real time to adapt the behavior of artificial intel-
ligence systems, creating closed - loop feedback that can adjust according to the mental,
emotional, or cognitive state of the user. These systems sit at the intersection of
brain-computer interfaces (BClIs), neurofeedback, affective computing, adaptive learning, and
Al, and promise to transform domains ranging from education and rehabilitation to hu-
man—machine collaboration and mental health. But with great promise come profound tech-
nical, ethical, and societal challenges: issues of signal fidelity and latency; interpretability and
trust; individual variability; data privacy and autonomy; potential for bias and misuse. In this
opinion piece | explore the potential benefits of brain-to-Al adaptive feedback systems, the key
obstacles they face, and the governance, design, and value judgments that must guide their
development if they are to enhance human well-being rather than undermine it.
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HE IDEA that machines should adjust their behavior to
human mental states is not new, but what is new is how
far our technological capacity has advanced. Modern
brain-to-Al adaptive feedback systems can monitor neural or
neurophysiological activity—via EEG, fNIRS, or related sensors,
sometimes combined with peripheral biometrics—and feed that
into Al algorithms that adapt in real time: changing interface
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difficulty, pacing, modality, prompts, stimulus, or even form of
feedback (Koelewijn et al., 2021; Valeriani et al., 2022). A
learner whose engagement drops might be given easier tasks;
someone stressed might be redirected with breathing cues;
someone suffering from attention deficit might get visual or
auditory modifications to keep them on track. The feedback loop
thus becomes continuous and dynamic, not just reactive. Early
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empirical results, for example in neuroadaptive tutoring systems,
show increased subjective engagement and better emotional
regulation (Angulo et al., 2024; Baradari et al., 2025).

The potential applications are broad. In education, such
systems may allow adaptive tutoring that is responsive to fatigue,
distraction, emotional overload; in therapy or rehabilitation, they
can tailor interventions to enable recovery or compensate for
impairment with greater sensitivity; in mental health they may
help with anxiety, depression, attention disorders; in hu-
man-computer interaction they may make devices less frustrat-
ing, more accessible. For people with severe motor or commu-
nication disabilities, brain-Al systems already enable control of
prosthetics, cursors, or robotic limbs via decoding of neural
signals (Belwafi & Ghaffari, 2024).

Yet despite promise, these systems confront serious chal-
lenges. The technical ones are formidable: real-time
neuro-signal acquisition is noisy, subject to artifacts, and often
requires trade-offs in comfort, invasiveness, and cost. Machine
learning models that use these signals must generalize across
individual differences in brain anatomy, physiology, and cogni-
tive style; they must do so with minimal latency so that feedback
is meaningful and not disruptive (Kostas & Rudzicz, 2020).
There is also the “ground truth” problem—how do we reliably
know what mental state we are measuring, whether attention,
engagement, or emotional valence, and how these translate into
appropriate adaptive actions? Misclassifications or mis -
inferences risk causing frustration, dissuading users, or worse,
reinforcing negative states.

Beyond technical issues, there are ethical, psychological,
and social dimensions. One major risk is loss of autonomy. If an
Al system begins to anticipate and steer one’s cognitive states—
“nudging” intentionally or not—users may come to rely on it,
possibly de-emphasizing their own self-regulation (Laitinen &
Sahlgren, 2021). Who decides what the “optimal” mental state is?
What if what is optimal for one purpose (e.g. productivity) con-
flicts with what is optimal for another (well-being, creativity,
rest)?

Data privacy and security loom large. Brain data are
among the most sensitive possible: unique, hard to anonymize,
possibly revealing more about traits and disorders than the user
intends. Systems that store or transmit such data must guard
against misuse (commercial, political, discriminatory) (Jwa &
Poldrack, 2022). There is also the risk of bias—if training data
for neuroadaptive systems is skewed demographically, cogni-
tively, culturally, then the adaptive responses may systematically
favor some users over others, exacerbating existing inequalities.

Another issue involves trust, transparency, interpretability.
Users must have some sense of how the system works—why it
adapts the way it does. If Al behavior seems arbitrary, or pair-
ings of brain state — action are mysterious, trust will suffer.
Worse, users may mistake Al suggestions for truths about them-
selves, internalizing wrong assumptions (Weld & Bansal, 2019).
Studies suggest that outcome feedback (showing users outcomes
of system decisions) can increase trust more than mere inter-

https://bonoi.org/index.php/si

Sl | October 30, 2025 | vol. 47 | no. 4

pretability (Afroogh et al., 2024).

Socially, there is the question of what effects widespread
use will have on human cognition. If attentional lapses are im-
mediately corrected by Al, do people lose capacity to endure
boredom or distraction, skills essential for many tasks? If emo-
tional regulation is offloaded, do we risk atrophy of internal
coping mechanisms? And more broadly: who benefits from
these systems? If engineered primarily for commercial or insti-
tutional ends (more efficient workers, better test takers), might
they reinforce forms of control rather than liberation?

Given these tension points, what design principles and
governance frameworks should guide the responsible develop-
ment of brain-to-Al adaptive feedback systems? First, it is es-
sential to respect human dignity and agency: systems should be
opt-in, allow user override, provide users with meaningful con-
trol over how, when, and to what extent adaptation occurs. Se-
cond, transparency: users should know what signals are being
collected, what inferences are being drawn, and how adaptation
works. Third, privacy and security: brain signals should be
treated as highly sensitive data, with high standards of encryp-
tion, minimal retention, and robust consent regimes. Fourth,
fairness: ensure representative training / calibration datasets;
build systems that adapt to many brain types and cognitive
styles; monitor for bias continuously. Fifth, usability and inclu-
sivity: adaptivity should reduce (not increase) user frustration;
systems should be accessible in cost, hardware, comfort; ensure
adaptation does not mean increasing burden of calibration or
maintenance. Sixth, empirical evaluation not just for engage-
ment or self - report, but for long-term cognitive, emotional,
social outcomes.

Regulatory and policy frameworks also deserve attention.
It is unlikely that market forces alone will ensure the right
trade-offs. Regulators may need to treat brain data under similar
or stronger protections as medical or biometric data. Standards
bodies may need to define norms for accuracy, reliability, safety.
Ethical review should accompany deployments in sensitive areas
(mental health, education) as in clinical interventions. Public
discourse should involve stakeholders: end users, neuroscientists,
ethicists, technologists, policymakers.

In many ways brain-to-Al adaptive feedback systems rep-
resent a microcosm of deeper questions about how humans want
to relate with intelligent machines: do we want assistive partners?
Controllers? Guardians of our inner life? Without reflection,
there is risk that the “assistive partner”—if designed poor-
ly—becomes a subtle controller. But if designed thoughtfully,
such systems could help people extend their capacities: learn
more deeply, recover more fully, live more resiliently in an in-
creasingly complex world.

The future is neither a predetermined utopia nor an inevi-
table dystopia. As brain-to-Al adaptive feedback systems mature,
our collective choices about values, priorities, and governance
will matter enormously. We must insist that these systems serve
human flourishing in all its richness, not just efficiency, optimi-
zation, or profit. m
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