Materials

Smart Materials That Self-Heal or Adapt to Environmental Stimuli

Terry Poprara

Université Paris-Saclay, Bâtiment Breguet, 3 rue Joliot-Curie, 91190 Gif-sur-Yvette, France *: All correspondence should be sent to: Dr. Terry Poprara

Author's Contact: Dr. Terry Poprara, Ph.D., E-mail: terrypoprara@yahoo.com

DOI: https://doi.org/10.15354/si.25.pe27

Funding: No funding source declared.

COI: The author declares no competing interest.

Al Declaration: The author affirms that artificial intelligence did not contribute to the process of preparing the work.

The development of smart materials capable of self-healing or adapting to environmental stimuli represents one of the most transformative advances in material science. These materials, ranging from polymers and composites to bio-inspired hydrogels, offer the potential to dramatically enhance durability, safety, and efficiency across industries, including aerospace, construction, electronics, and healthcare. Self-healing materials can autonomously repair structural damage, extend product lifespan and reduce maintenance costs, while adaptive materials respond dynamically to changes in temperature, pressure, light, pH, or mechanical stress, optimizing performance in real time. The integration of such capabilities into engineering, biomedical devices, and consumer products challenges traditional paradigms of design and maintenance, demanding new manufacturing processes and theoretical models. This article explores the principles, mechanisms, and emerging applications of smart materials, highlighting their capacity to transform technological landscapes, foster sustainability, and inspire a future in which materials are no longer passive but actively interact with their environment.

Keywords: Smart Materials, Self-Healing, Adaptive Materials, Stimuli-Responsive Polymers, Material Innovation

Science Insights, October 30, 2025; Vol. 47, No. 4, pp.1991-1995.

© 2025 Insights Publisher. All rights reserved.

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the <u>Creative Commons Attribution-NonCommercial 4.0 License</u> which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed by the Insights Publisher.

HE EMERGENCE of smart materials capable of self-healing or responding to environmental stimuli is reshaping the foundations of material science and engineering. Unlike traditional materials, which are largely passive and degrade over time, smart materials possess intrinsic or engineered properties that allow them to sense, respond, and

sometimes repair themselves without external intervention (Wang et al., 2023). This capability opens new horizons in industries where durability, adaptability, and sustainability are paramount, transforming the way products are designed, manufactured, and maintained. These innovations stem from the convergence of chemistry, physics, and biology, creating materials

that blur the line between the mechanical rigidity of conventional matter and the responsive, dynamic behavior of living systems (Geng et al., 2023).

Self-healing materials represent a particularly striking innovation within the field of smart materials. Inspired by biological systems, such as human skin, which naturally heals after injury, these materials are designed to autonomously repair cracks, fractures, or other forms of damage (Bertsch et al., 2022). The mechanisms underlying self-healing are diverse, often involving microcapsules containing repair agents, dynamic covalent bonds, supramolecular interactions, or shape-memory polymers that restore structural integrity when triggered by stress, temperature, or light. Microcapsule-based systems, for example, embed tiny reservoirs of monomers or catalysts within a polymer matrix (Kartsonakis et al., 2024). When a crack forms, the capsules rupture, releasing their contents into the damaged region, where polymerization occurs and the material effectively "heals" itself (Hammer et al., 2022). This approach has demonstrated significant promise in coatings, structural composites, and electronics, where maintenance costs and downtime are critical considerations. Dynamic covalent chemistry, in contrast, leverages reversible chemical bonds that can break and re-form under specific conditions, allowing materials to repeatedly recover from damage (Zheng et al., 2021). This approach offers the advantage of repeatable self-healing, a feature critical for long-term applications in demanding environments.

Adaptive materials, or stimuli-responsive materials, extend the concept of responsiveness beyond repair. These materials undergo controlled, often reversible, changes in their physical or chemical properties in response to environmental triggers (Xia et al., 2022). Temperature-responsive polymers, for example, can expand, contract, or alter their permeability depending on thermal fluctuations. Similarly, pH-responsive hydrogels can swell or shrink, adjusting their structure and function in response to local acidity (Lin et al., 2021). Light-responsive systems, often incorporating photochromic molecules, can alter color, shape, or conductivity when exposed to specific wavelengths. Mechanical stress-responsive materials, sometimes referred to as mechanochromic, change color or structure in response to applied forces, offering both aesthetic and diagnostic functions (Yoon et al., 2022). The potential applications of these adaptive behaviors are vast, spanning from drug delivery systems that release therapeutic agents on-demand to aerospace structures capable of modifying shape for optimal aerodynamic performance under varying conditions.

The synergy between self-healing and adaptive behaviors represents a particularly fertile area of research. Materials that both repair damage and adjust to environmental stimuli embody the principles of resilience and intelligence, characteristics typically associated with living systems (Tan et al., 2018). In the biomedical field, self-healing hydrogels that respond to temperature or enzymatic activity are under investigation for tissue engineering, wound dressings, and drug delivery (Liu & Hsu, 2018). These materials can maintain structural integrity within the body while dynamically interacting with cellular environments, promoting healing, and releasing therapeutic compounds in a controlled manner. In electronics, self-healing conductive polymers and adaptive substrates are enabling flexible, wearable

devices that withstand mechanical deformation and environmental fluctuations, extending operational life and reliability (Tolvanen et al., 2022). Such innovations challenge conventional assumptions that materials are passive elements of design, instead positioning them as active participants in functional systems.

The environmental and economic implications of smart materials are equally compelling. By reducing the frequency of repairs and replacements, self-healing materials can significantly lower resource consumption, contributing to sustainability goals. In infrastructure, for example, self-healing concrete—often containing microcapsules or bacterial systems that precipitate calcium carbonate—has been developed to repair microcracks before they propagate, potentially extending the lifespan of bridges, roads, and buildings while reducing maintenance costs (Jiang et al., 2024). Adaptive materials, by responding to environmental stimuli, can optimize energy efficiency. Smart windows that adjust opacity in response to sunlight intensity reduce heating and cooling demands, while thermally responsive coatings on vehicles or industrial equipment improve energy management by modifying heat absorption or reflection (Wu et al., 2020). The integration of these materials into manufacturing, transportation, and urban planning represents a convergence of technological innovation and environmental stewardship.

Despite the exciting potential, the development and implementation of smart materials face significant challenges. Achieving reliable and consistent self-healing or adaptive behavior under real-world conditions requires precise control over molecular architecture, processing methods, and material interfaces (Liu et al., 2021). Scalability remains an obstacle; many laboratory demonstrations of self-healing polymers or adaptive composites rely on carefully controlled environments, and replicating these conditions in mass production is nontrivial (Nadim et al., 2025). Additionally, integrating smart materials into complex systems necessitates compatibility with existing manufacturing techniques, such as extrusion, injection molding, or additive manufacturing, which may require new approaches to accommodate dynamic or reactive components. Longevity and fatigue resistance are also critical considerations; repeated cycles of self-healing or adaptation may degrade the material over time, necessitating further research into mechanisms that preserve functionality over extended use (An et al., 2021).

From a scientific perspective, the study of smart materials challenges fundamental concepts in thermodynamics, mechanics, and materials chemistry. Designing systems that can autonomously repair or adapt requires an understanding of energy dissipation, molecular mobility, and signal transduction at multiple scales, from nanostructures to macroscopic assemblies (Tan et al., 2020). Computational modeling and simulation play an increasingly important role, enabling researchers to predict behavior, optimize composition, and explore complex interactions that are difficult to study experimentally (Arevalo & Buehler, 2023). Machine learning and artificial intelligence have begun to intersect with material design, allowing for high-throughput screening of chemical compositions and structural configurations to identify candidates with optimal self-healing or adaptive properties (Guo et al., 2020). This integration of computational and experimental approaches accelerates discovery and enhances the precision of material engineering, potentially shortening the time from laboratory innovation to industrial application.

The ethical and societal implications of smart materials warrant consideration as well. The deployment of self-healing and adaptive systems in critical infrastructure or healthcare introduces questions regarding safety, reliability, and accountability. For example, if a self-healing composite fails unexpectedly, determining liability may be more complex than in conventional systems (Haines-Gadd et al., 2021). Furthermore, as these materials become increasingly integrated into wearable technology, robotics, or biomedical devices, concerns related to privacy, autonomy, and long-term biological interactions emerge (Kanter et al., 2023). Regulatory frameworks must evolve to accommodate materials that actively respond to their environment, ensuring that safety standards, testing protocols, and lifecycle assessments reflect the unique properties of these innovations.

Looking forward, the trajectory of smart materials suggests a future in which materials themselves contribute to resilience, efficiency, and sustainability in unprecedented ways (Ibn - Mohammed et al., 2023). Advances in bioinspired design, nanotechnology, and supramolecular chemistry are likely to yield materials with higher degrees of autonomy, multi-functionality, and environmental sensitivity. Hybrid systems that combine multiple stimuli-responsive behaviors with self-healing capacity may enable products that not only survive damage but actively optimize their performance in response to dynamic conditions (Kim et al., 2024). Such materials could revolutionize sectors ranging from consumer electronics and transportation to energy storage, medical devices, and beyond, challenging designers, engineers, and policymakers to rethink the role of materials in complex systems.

Moreover, the conceptual shift from static to active mate-

rials has implications beyond technology. It encourages a new mindset in engineering, one that embraces resilience, adaptability, and integration with natural processes. The development of smart materials also provides a platform for interdisciplinary collaboration, drawing together chemists, physicists, engineers, biologists, and computer scientists to address complex challenges that no single discipline could tackle in isolation (Stuart - Fox et al., 2023). The resulting innovations are not merely incremental improvements but fundamental transformations in how materials interact with their environment and with human systems.

In conclusion, smart materials that self-heal or adapt to environmental stimuli exemplify a profound evolution in material science. By emulating biological resilience and responsiveness, these materials promise to enhance durability, efficiency, and sustainability across a wide range of applications. The challenges associated with scaling, reliability, and integration are formidable, yet the potential rewards in technological innovation, resource conservation, and functional sophistication are immense. As research continues to deepen our understanding of the mechanisms that enable self-healing and adaptive behavior, the prospect of materials that actively participate in their environment—rather than passively enduring it—becomes increasingly tangible. The advent of these smart materials not only extends the boundaries of engineering but also invites a broader reflection on the relationship between human ingenuity, technology, and the natural world. In this emerging paradigm, materials are no longer inert components but dynamic agents, capable of responding, repairing, and adapting, heralding a future in which human-made systems are as resilient, flexible, and intelligent as the living organisms that inspired them.

Received: May 13, 2025 | Revised: July 30, 2025 | Accepted: September 06 2025

References

An, S., Yoon, S. S., & Lee, M. W. (2021). Self-healing structural materials. Polymers, 13(14), 2297. DOI: https://doi.org/10.3390/polym13142297

Arevalo, S., & Buehler, M. J. (2023). Learning from nature by leveraging integrative biomateriomics modeling toward adaptive and functional materials. MRS Bulletin, 48(11), 1140–1152. DOI:

https://doi.org/10.1557/s43577-023-00610-8

Bertsch, P., Diba, M., Mooney, D., & Leeuwenburgh, S. C. G. (2022). Self-healing injectable hydrogels for tissue regeneration. Chemical Reviews, 123(2), 834–885. DOI: https://doi.org/10.1021/acs.chemrev.2c00179

Geng, Y., Jia, Z., & Li, L. (2023). Structural engineered living materials. Nano Research, 17(2), 715–738. DOI:

https://doi.org/10.1007/s12274-023-6313-7

Guo, K., Yang, Z., Yu, C., & Buehler, M. J. (2020). Artificial intelligence and machine learning in design of mechanical materials. Materials Horizons, 8(4), 1153–1171. DOI: https://doi.org/10.1039/d0mh01451f

Haines-Gadd, M., Charnley, F., & Encinas-Oropesa, A. (2021). Self-healing materials: A pathway to immortal products or a risk to circular economy systems? Journal of Cleaner Production, 315, 128193. DOI:

https://doi.org/10.1016/j.jclepro.2021 .128193

Hammer, P., Uvida, M. C., & Trentin, A. (2022). Self-healing organic-inorganic coatings. Coatings, 12(11), 1668. DOI:

https://doi.org/10.3390/coatings1211 1668

Ibn-Mohammed, T., Mustapha, K. B., Abdulkareem, M., Fuensanta, A. U., Pecunia, V., & Dancer, C. E. J. (2023). Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices. MRS Communications, 13(5), 795–808. DOI:

https://doi.org/10.1557/s43579-023-00480-w

Jiang, L., Wu, M., Fei, D., Chen, D., Xiao, L., Chen, W., Du, W., & Ding,

Q. (2024). State-of-the-art review of microcapsule self-repairing concrete: Principles, applications, test methods, prospects. Polymers, 16(22), 3165. DOI:

https://doi.org/10.3390/polym162231 65

Kanter, A.-F. J. de, Jongsma, K., Bouten, C. V. C., & Bredenoord, A. L. (2023). How smart are smart materials? A conceptual and ethical analysis of smart lifelike materials for the design of regenerative valve implants. Science and Engineering Ethics, 29, 105. DOI: https://doi.org/10.1007/s11948-023-00453-1

Kartsonakis, I. A., Kontiza, A., & Kanellopoulou, I. A. (2024). Advanced micro/nanocapsules for self-healing coatings. Applied Sciences, 14(18), 8396. DOI:

https://doi.org/10.3390/app1418839

Kim, S., Jeon, H., Koo, J. M., Oh, D. X., & Park, J. (2024). Practical applications of self-healing polymers beyond mechanical and electrical recovery. Advanced Science, 11(16), 2302463. DOI:

https://doi.org/10.1002/advs.202302 463

Lin, X., Wang, X., Zeng, L., Wu, Z. L., Guo, H., & Hourdet, D. (2021). Stimuli-responsive toughening of hydrogels. Chemistry of Materials, 33(19), 7633–7645. DOI: https://doi.org/10.1021/acs.chemmater.1c01019

Liu, J., Li, X., Yang, X., & Zhang, X. (2021). Recent advances in self-healable intelligent materials enabled by supramolecular crosslinking design. Advanced Intelligent Systems, 3(5), 2000183. DOI: https://doi.org/10.1002/aisy.202000183

Liu, Y., & Hsu, S. (2018). Synthesis and biomedical applications of self-healing hydrogels. Frontiers in Chemistry, 6, 449. DOI: https://doi.org/10.3389/fchem.2018.00449

Nadim, E., Major, I., Devine, D. M., & Paraskar, P. M. (2025). Biobased self-healing functional composites and their applications. Journal of Materials Research and Technology, 6(1), 65. DOI:

https://doi.org/10.1186/s42252-025-00065-x

Stuart-Fox, D., Ng, L., Barner, L.,

Bennett, A. T. D., Blamires, S. J., Elgar, M. A., Evans, A. R., Franklin, A. M., Hölttä-Otto, K., Hutchison, J. A., Jativa, F., Jessop, A.-L., Kelley, J. L., McGaw, J., Mei, J., Mirkhalaf, M., Musameh, M., Neto, C., O'Connor, A. J., ... Wong, W. W. H. (2023). Challenges and opportunities for innovation in bioinformed sustainable materials. Communications Materials, 4(1), 405. DOI: https://doi.org/10.1038/s43246-023-00405-z

Tan, Y. J., Susanto, G. J., Ali, H. P. A., & Tee, B. C. K. (2020). Progress and roadmap for intelligent self-healing materials in autonomous robotics. Advanced Materials, 33(19), 2002800. DOI:

https://doi.org/10.1002/adma.20200 2800

Tan, Y. J., Wu, J., Li, H., & Tee, B. C. K. (2018). Self-healing electronic materials for a smart and sustainable future. ACS Applied Materials & Interfaces, 10(18), 15331–15349. DOI:

https://doi.org/10.1021/acsami.7b19 511

Tolvanen, J., Nelo, M., Alasmäki, H., Siponkoski, T., Mäkelä, P., Vahera, T., Hannu, J., Juuti, J., & Jantunen, H. (2022). Ultraelastic and high-conductivity multiphase conductor with universally autonomous self-healing. Advanced Science, 9(36), 2205485. DOI: https://doi.org/10.1002/advs.202205

Wang, B., Lee, T. L., & Yang, Q. (2023). Advances in smart materials and structures. Materials, 16(22), 7206. DOI:

https://doi.org/10.3390/ma16227206

Wu, J., Mu, C., & Yang, J. (2020). Reversible visible/near-infrared light responsive thin films based on indium tin oxide nanocrystals and polymer. Scientific Reports, 10(1), 13425. DOI:

https://doi.org/10.1038/s41598-020-69110-y

Xia, X., Spadaccini, C. M., & Greer, J. R. (2022). Responsive materials architected in space and time. Nature Reviews Materials, 7(9), 683–705. DOI:

https://doi.org/10.1038/s41578-022-00450-z

Yoon, S., Choi, J. H., Sung, B. J., Bang, J., & Kim, T. A. (2022). Mechanochromic and thermally reprocessable thermosets for autonomic damage reporting and self-healing coatings. NPG Asia Materials, 14, 6. DOI: https://doi.org/10.1038/s41427-022-

00406-3

Zheng, N., Xu, Y., Zhao, Q., & Xie, T. (2021). Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical

recycling and self-healing. Chemical Reviews, 121(3), 1716–1745. DOI: https://doi.org/10.1021/acs.chemrev.0c00938