Epigenetic Modification of Nociceptive Mediators: Implications for the Etiology of Neural Hypersensitivity (Part II)
Aili Sunny, Senzhu Bao, Yusheng Liu, Maria L. Bolick, Mary K. Pathak, Fuzhou Wang

doi: http://dx.doi.org/10.15354/si.15.re029
Science Insights is published by The Bonoi Academy of Science & Education, Chapel Hill, NC 27510, USA
Copyright © 2015 The Bonoi Academy of Science & Education. All rights reserved.
p-ISSN: 2372-8191
e-ISSN: 2329-5856
DOI: 10.15354/issn.2329-5856

The online version of this article, along with updated information and services, is located on the World Wide Web at:
www.bonoi.org

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Science Insights® can be obtained via our Permission Application System, a service of the Copyright Clearance Center. If you cannot access to this system, you can request permission through our Editorial Office. Once the online version of the published article for which permission is being requested is located, Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Submission: Information about submission to Science Insights® please read through online For Authors.
Epigenetic Modification of Nociceptive Mediators: Implications for the Etiology of Neural Hypersensitivity (Part II)

Aili Sunny,* † Senzhu Bao,* † Yusheng Liu,* † Maria L. Bolick,* Mary K. Pathak,* Fuzhou Wang* † ‡

SUMMARY Although pain is the most awful feeling for personal perception, it possesses critical benefits for preventing our human being to be injured further. Pain itself forms an overbalanced microenvironment in which people undertakes individualized changes in its neurobiological, psychological, endocrinological and genetic properties especially in the context of chronic pain or when the acute pain transmitted to chronicity. Our previous part (Part I) review the general epigenetic modification of nociceptive contributing factors in the context of chronic pain. Herein (Part II) we paid specific attention on the epigenetic regulation of pain-associated molecules including neurotransmitters and other factors. A detailed understanding of the specific modulating factors that influence individual epigenetic differences contributing to pain sensitivity and responsiveness to analgesics possesses essential implications in clinical pain management.

Keywords: Pain – Gene expression – Epigenetics – Analgesia – Neural inhibition

PAIN IS a don’t-want-to-be experience no matter at which context it is, either at the acute postoperative phase or when it becomes chronicity, even though it possesses function of further-injury avoidance. Different types of therapeutic maneuvers, physiologically and physically, have been developed to control the overbalanced pain, whereas the effectiveness of these methods is limited (1, 2). Facilitation and inhibition are two major compositions of the pathway of pain transduction that draws much attention on in the past decades (3, 4), and great progress was made based on these two “yin” and “yang” systems. However, our patients with pain are still suffering from the “God-made original sinful perception” without efficient conquer. The development of epigenetics promises patients hope for
controlling the pain through modifying the gene expression of pain-related molecules that finally determines the fate of the patient’s outcome.

Epigenetic Regulations of Pain

Pain as one of the major stressors can evoke physiological and psychological changes that induce alterations in the expression of pain-associated molecules (3). Under the stimulation of pain, different molecules and proteins showed different levels of expression that finally forms a complex molecular matrix. This is the determinant whether the pain will tend to recover or to get worsened. However, who was the underlying controller of the molecular expression, and further how they reached such a precise interaction? Emerging evidence suggests that epigenetic modulation operates the expression of different genes in the context of pain (6). Given peripheral and central sensitizations are two major parts of the pathogenesis of pain (7,8), we herein describe their relationship between epigenetic mediation separately, but the de-facto relationship should be in combination.

Epigenetics and Peripheral Sensitization

In most cases, pain derives from peripheral tissue injury or diseases that would unavoidably result in injury on the nociceptors or neural trunks. A series of responses, physically and physiologically, will follow up and then the self-adjustment is activated to avoid further injury and to control the propagation of pain (9). This is the typical process of peripheral injury induced pain. One pivotal step of the pain occurrence is the newly generated mediators that were released by the injured tissues, recruited immune cells and peripheral neurons (10). The injury-induced peripheral pro-analgesic mediators include pro-inflammatory cytokines (TNF-α, IL-1β), chemokines (CCL2, CCL3, and CXCL5), prostanooids (PGE2, PGI2), nerve growth factor (NGF), bradykinin, histamine, platelet-activating factor, nitric oxide (NO), and proton (H+) (11-13). Once these mediators were released due to tissue injury, they will activate and sensitize the nociceptors making them spontaneously active and more readily to be activated by sub-threshold stimuli. We will discuss the epigenetic regulation on these peripheral pain-related mediators. TNF-α and IL-1β are two typical pro-inflammatory cytokines believed released and upregulated in response to tissue injury. In arthritic patients, HDAC inhibitors have been observed producing substantial clinical benefits and the levels of both TNF-α and IL-1β were significantly reduced upon the using of HDAC inhibitors (14,15) indicating that the expression of peripheral inflammatory cytokines is regulated by epigenetic mechanisms. In further, bindings of IL and TNF-α to their respective receptors lead to H4 hyperacetylation of other factors’ promoters via affecting NF-kB pathway (16)(16). Besides, the recruitment of NF-kB to pro-inflammatory genes was affected by H3K4 methylation (17). CCL2 excited primary sensory neurons by acting on the biophysical properties of Na(v)1.8 currents via a CCR2/Gβγ-dependent mechanism (18), and in consideration of the strong association between the changes in function of voltage-gated sodium channels in nociceptive primary sensory neurons participating in the development of peripheral hyper-excitability, and then CCL2 was considered as one important contributor of peripheral sensitization. Meanwhile, CCL2 enhanced striatal dopamine release by cognating to CCR2 receptor through extracellular signal-regulated kinase (ERK), a fundamental enzyme in striatal gene and epigenetic regulation (19), to sensitize cocaine (20) suggesting that chemokine activation is an essential component of peripheral sensitization that may be closely related to epigenetic regulation. As the target of COX inhibitors, PGE2 and PGI2 are two contributors to peripheral hyperalgesia. Emerging evidence showed that epigenetic alterations play a critical role in the regulation of the genes of the COX pathway (21), and also the epigenetic processes underlying expression of the prostanoid receptor EP2 were characterized (22) demonstrating that COX-PGE2-EP2 pathway is affected by epigenetic modulation. NGF, a small secreted protein, is critical for the growth, maintenance, and survival of target neurons. Brain-derived neurotrophic factor (BDNF) is the most studied NGF, and a large number of data documented its involvement in the regulation of pain (23). However, the expression of BDNF in the CNS was regulated by the interaction between MeCP2 and SIRT1, two critical epigenetic mediators (24), showing that an association between NGF and epigenetic exists. Bradykinin, histamine, platelet-activating factor and NO are four important inflammatory mediators released by injured tissue cell, blood vessels, and blood cells (12), and they contributed to the formation of peripheral inflammation soup around the injured area. Immuno-reactivity of HDAC 8 was detected in the histamine neurons with a pericellular pattern (25). NO itself is an essential mediator of epigenetic gene expression (26) and the NO population was affected by DNA methylation in arginases 1 and 2 (27) suggesting that these tissue-derived mediators also may be regulated by the epigenetic mechanisms. Although we thus far have evidence indicating the epigenetic regulation on the peripheral sensitization, it is still infancy and in-depth work is needed in elucidating the epigenetic modulation on their expression and the potential intertalk amongst them each other.
Epigenetics and Central Sensitization

Central sensitization is defined as an increased response to stimulation that is mediated by amplification of signaling in the CNS (7, 8). Neuroplasticity, glia activation, ion channels’ expression and states, and neurotransmitters balance all are critical contributors to the central sensitization (28), a pathological state in which merely the subthreshold stimulation or even no-stimulation (i.e. spontaneously) causes pain. The persistence of pain itself is a risk factor in inducing central sensitization, through which a vicious cycle formed only if when the pain was effectively treated. A great progress has been being made on the understanding of pain mechanisms on the basis of central sensitization, whereas the therapeutic efficacy with currently available methods is limited (29). Traditional concept is that seeking and finding potential contributors to the pathogenesis of pain, and then figuring out activating or inhibiting molecules on the target players. Based on this, over hundreds of molecules were identified over the past decades, but we still cannot reach the ideal purpose – conquer the pain with easy-to-use method. What is the outlet for the next step in pain study? For this question, the epigenetic modulation may give us hope.

Both systemic and spinal administration of HDAC inhibitors produced analgesic effects in inflammatory pain models (30), and such effect resulted from the expression changes of the mGluR2 receptor in both DRG and spinal cord (31). Moreover, pain itself evoked epigenetic changes in pro-analgesic genes. The down-regulation of glutamic acid decarboxylase 65 (GAD65) and hypocacetylation at its promoter were detected when complete Freund’s adjuvant (CFA) was injected into rat’s paw or the spinal nerve was ligated (32). Chronic pain conditions are strongly associated with the changes in brain structure and cortical function, but these changes are mediated by the reversible DNA methylation in the mouse prefrontal cortex (33). The increased monocyt chemotactic protein (MCP-3) expression associated with IL-6 dependent epigenetic modification at the MCP-3 promoter after nerve injury plays a critical role in the neuropathic pain-like state (34). Promoter demethyl-ation of cystathionine-β-synthetase gene, the enzyme promoting synthesizing hydrogen sulfide, contributes to inflammatory hyperalgesia through protein kinase A (PKA) pathway (35). Nonetheless, the increased global DNA methylation and methyl-CpG-binding protein 2 (MeCP2) expression in the spinal cord after nerve damage plays an important role in neuropathic pain (36). Hyperacetylation of histone H3 on the promoter regions of macrophage inflammatory protein 2 (MIP-2) and C-X-C chemokine receptor type 2 (CXCR2) evoked chronic neuroinflammation by neutrophil accumulation resulting in neuropathic pain (37). These above-mentioned findings demonstrate that pain can induce DNA or histone methylation and demethylation, or/and histone hyperacetylation and hypocacetylation of specific genes, and then these epigenetic alterations either deteriorate or alleviate pain. What is the final effect therefore depends on the epigenetic balance.

Opioidergic alterations under the chronic pain condition were considered as an essential contributor to central sensitization (38), and corresponding epigenetic modification was proposed to be one of the underlying mechanisms. Chronic use of opioid increased methylation at a CpG rich island in the OPRM1 gene coding for MOP and at a global methylation site (LINE-1) in leukocytes, of which strongly associated with the increased clinical pain (39). However, ultra-low-dose naloxone provides clinical valuable for neuropathic pain management through regulating global histone methylation suggesting that either the opioid-induced hyperalgesia or pain-induced opioidergic impairment; epigenetic modification is the potential controller (40). Furthermore, epigenetic upregulation of NGF activity in the central nucleus of the amygdale (CeA) promoted the behavior of opioid reward and increased the sensitivity to the rewarding effect of subsequent opioids (41). How to reach the ideal state and how to keep the balance of opioidergic function via adjusting epigenetic regulation and other pain-modulating systems still need to be investigated.

Epigenetic Mechanisms of Pain – Future Directions

Although we so far have evidence for the correlation between epigenetic modification and pain, it just dawns on us. We hereby hypothesized that pain was a three-dimensional bio-phenomenon that includes physical, physiological and psychological changes, in which the tissue injury including chemical, physical, biological and disease-associated ones belongs to the physical dimension, and the molecular and cellular changes including peripheral and central alterations belong to the physiological dimension, and the changes in spiritual and mood belong to the psychological dimension. How to teasing out the precise relationship among these three facets and epigenetic modulation is a thorny challenge for pain scientists.

The interacting matrix among different kinds of pain-related molecules at the peripheral site and in the CNS and different types of epigenetic regulators is the actual situation under the condition of pain. Figuring this complex is as difficult as mapping human disease spectrotyping, while it promises us the final solution of pain therapy. We cannot explore this with a once-for-all pattern, but the step-by-step investigation is
the feasible way in tapping the interactions between two or three these molecules. Good examples are as follows: nerve injury caused a marked reduction in the acetylation of histone H4 at K(v)4.3-neuron-restrictive silencer element (NRSE) through transcriptional suppressor neuron-restrictive silencer factor (NRSF) in the DRG (42), which depicted the crosstalk among histone acetylation, NRSE, K(v)4.3 and nerve injury in DRG; in addition, nerve injury diminished the activity of the big conductance Ca2+-activated K+ (BK) channel in small and medium DRG neurons by increased BDNF through epigenetic and transcriptional mechanisms (43), which mapped the interaction among BK channel, BDNF, epigenetic modulation and nerve injury in DRG; and further the histone acetyltransferase E1A binding protein p300 epigenetically mediated chronic constriction injury (CCI) induced neuropathic pain via upregulating COX-2 expression in the spinal cord (44), which showed the interrelationship among p300, COX-2, histone acetylation and nerve injury in the spinal cord. Therefore, great efforts are needed to map the complex.

No matter what mechanisms can be explored, the ultimate purpose is to reveal novel targets for pain management. Although the currently approved HDAC inhibitors as drugs like valproic acid for epilepsy and SAHA and FK228 for T cell lymphoma (45, 46) have been tested in animal models of pain, their effects on patients need to be observed at length. These global inhibitors of HDACs would unavoidably produce unexpected side effects, so the risks and benefits should be weighed before giving for pain control. This also raises the question that more specific therapeutics focusing on different epigenetic modulations are necessary for the treatment of pain. For the precise relationship amongst above-mentioned molecules and epigenetic mediators, the methods from the computational biology, such as molecular docking and packing, quantitative structure-activity relationships (QSAR), Monte Carlo simulated annealing approach, structural bioinformatics, pharmacophore modeling, and signal peptide prediction etc. may provide insights into corresponding molecule-molecule interactions and give hope for the development of novel therapeutics for pain.

In conclusion, the emerging evidence indicates that epigenetic modulation is an essential contributor to the pathogenesis of pain. The study on epigenetic control of pain is still infancy, efforts are needed and a new avenue will be opened along with the progress in the exploration of epigenetic-associated modulation of pain.

Conflict of Interests
None

Acknowledgements
This work is supported by the National Natural Scientific Foundation of China (81271242, 81371248), BASE Foundation from Bonoi Academy of Science and Education (BASE2013002B), and Nanjing Outstanding Young Scientists Grant (JQX12009).

References
10. Schaible HG. Pathophysiology of pain. Orthopade 2007;36: 8, 10-12, 14-16.

33. Tsai RY, Shen CH, Feng YP, Chien CC, Lee SO, Tsai WY, Lin YS, Wong CS. Ultra-low-dose naloxone enhances the

44. Zhu XY, Huang CS, Li Q, Chang RM, Song ZB, Zou WY, Guo QL. p300 exerts an epigenetic role in chronic neuropathic pain through its acetyltransferase activity in rats following chronic constriction injury (CCI). Mol Pain 2012; 8: 84.
