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The gut microbiota is highly capable of biotransformation, exposing the host to a wide variety 

of physiologically active compounds. These metabolites participate in signaling between the 

gastrointestinal tract and the central nervous system and may regulate physiological and 

pathological processes in the central nervous system. This bidirectional communication can 

take place in a variety of ways, including binding to receptors in the host brain, stimulating the 

vagus nerve in the gut, modifying central neurotransmission, and influencing neuroinflam- 

mation. The purpose of this article is to discuss the mechanism of action of microbial metabo-

lites such as short-chain fatty acids, bile acids, and neurotransmitters in the gut-brain axis and 

to propose new strategies for treating related neurological illnesses from a gut microbiota 

regulation perspective. 
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HE human gut microbiota contains between 500 and 

1000 species of bacteria and around 2 million genes, 

which is more than 100 times the total number of human 

genes, many of which encode proteins that conduct metabolic 

tasks and create microbial-specific compounds (1). This function 

of the microbiota broadens the breadth of host biotransformation 

applications and the variety of substances that can be processed. 

This extensive metabolic capacity enables the microbiota to 

react with a variety of substrates that enter the gut, creating a 

huge number of metabolites, many of which are critical molecu-

lar precursors for the host. The gut-brain axis (GBA) is a sig-

naling network that runs in both directions between the gastro-

intestinal tract and the central nervous system (CNS) (2). The 

autonomic nervous system (ANS), the hypothalam-

ic-pituitary-adrenal axis (HPA axis), and the immune system all 

contribute to this axis' signaling. Microbe-associated metabolites 

control CNS function and behavior via these diverse routes. 

Significant alterations in the structure of the gut microbiota have 

been documented in a variety of CNS illnesses, including autism 

spectrum disorder (ASD), anxiety, and depression (3). While the 

underlying association between microbial changes and neuro-

logical disease is not entirely understood, mouse studies have 

demonstrated that changes in the gut microbiome can affect 

mental psychology and behavior (4). This review focuses on the 

functions and mechanisms of bioactive chemicals generated by 

bacteria, such as short-chain fatty acids (SCFAs), bile acids 

(BAs), and neurotransmitters, in gut-brain transmission (Figure 

1). 
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Figure 1. Interaction between Gut Microbiota and Control Nervous System. 

 

 

 

 

SCFAs are small-molecule organic acids created by bacteria in 

the caecum and colon during anaerobic fermentation of dietary 

carbohydrates. They have a variety of effects on the central 

nervous system. The principal SCFAs created were acetic acid, 

propionic acid, and butyric acid, whereas isobutyric acid, valeric 

acid, and isovaleric acid were formed in trace levels (5). The 

feces of people with a high quality of life have a high concentra-

tion of Faecalibacterium and Coprococcus, which are 

gram-positive anaerobic bacteria capable of fermenting dietary 

fiber to create SCFAs (6, 7). In comparison to nondepressed 

controls, patients with major depressive disorder (MDD) had 

reduced SCFA levels in their stool, urine, and plasma (8, 9). 

Prebiotic-induced increases in SCFA have been shown to reduce 

depressive and anxious behaviors in mice and to alleviate cogni-

tive impairment in dementia model mice (10, 11). SCFAs have 

also been implicated in a number of neurodegenerative and cer-

ebrovascular illnesses, including Huntington's disease, Alzhei-

mer's disease, Parkinson's disease, and stroke (12-15). 

SCFAs can interact with GBA by binding to 

cell-expressed receptors and affecting the expression of host 

genes (16). SCFAs have the ability to bind to and activate the 

free fatty acid receptors 2, 3 (GPR43 or FFAR2), 2 (GPR41 or 

FFAR3), and 2 (GPR109A or HCAR2) (17). These receptors are 

expressed ubiquitously throughout the human body in a variety 

of tissues, including enteroendocrine cells, adipocytes, immune 

cells, and neurons. SCFA and GPR43 have host-dependent ef-

fects in the CNS, where microglia are resident macrophages that 

are dependent on the gut microbiota for maturation and function, 

and SCFA and GPR43 are essential for microglia homeostasis 

(18). Additionally, via influencing histone acetylation and meth-

ylation, SCFAs can exert epigenetic control on gene expression 

(19). 

Enteroendocrine cells can indirectly modulate GBA by 

promoting the release of intestinal hormones and peptides by 

SCFA (20). SCFAs may also influence feeding behavior by in-

creasing the release of anorectic hormones such as glucagon-like 

peptide-1 (GLP-1), peptide YY (PYY), and leptin (21-23). 

Along with acting on brain receptors, these appetite hormones 

also have an effect on the vagus nerve. The vagus nerve partici-

pates in the gut microbiota's control of hunger by showing that 

SCFA's anorectic impact was dramatically reduced in 

vagotomized mice (24, 25). SCFAs can also regulate appetite via 

central processes. Enteric acetate can pass the blood-cerebro- 

spinal fluid barrier and exert a direct effect on appetite regula-

tion in the hypothalamus via neuropeptide expression changes 

(26). 
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SCFAs also influence GBA via the maintenance of gut 

and blood-cerebrospinal fluid barrier function (27). Butyrate has 

been shown to increase tight junction protein expression and 

stabilize the intestinal mucosal barrier function, hence limiting 

the passage of bacteria and other pathogens from the gut to the 

blood (28). Increased permeability of the intestinal barrier in-

creases host exposure to bacterial lipopolysaccharide (LPS), 

resulting in chronic inflammatory responses. Chronic inflamma-

tion is implicated in a variety of neuropsychiatric illnesses, in-

cluding depression and anxiety, and pro-inflammatory cytokines 

have been shown to impact neurotransmission and behavior. 

Consistent with their role in the gut, SCFAs can help maintain 

the blood-cerebrospinal fluid barrier's integrity by boosting the 

expression of tight junctions (29). While SCFAs have been 

shown to have a number of direct and indirect effects on the 

CNS, the evidence supporting their ability to alleviate neurolog-

ical disorders remains inconsistent, and a greater understanding 

of the underlying mechanisms is required. 

 
BAs 
BAs are cholesterol-derived steroids that have direct and indi-

rect effects on the central nervous system. The two primary BAs, 

cholic acid (CA) and chenodeoxycholic acid (CDCA), are pro-

duced in the liver and subsequently released into bile together 

with glycine or taurine (30). BA is released into the gut in re-

sponse to a feeding stimulus, where it is reabsorbed in 95% of 

cases. A limited amount of BA is carried to the colon, where it is 

7-dehydroxylated by the gut flora to form secondary BAs, espe-

cially deoxycholic acid (DCA) and ursodeoxycholic acid 

(UDCA) (31). 

As with SCFA, BA can operate as a signaling molecule, 

activating the farnesoid X receptor (FXR), the G pro-

tein-coupled bile acid receptor 5 (TGR5), the pregnane X re-

ceptor (PXR), and the vitamin D receptor (VDR) (32, 33). At the 

same time, BA regulates glucose homeostasis, lipid metabolism, 

and energy expenditure, among other metabolic processes, with 

considerable influence on host metabolism (34). Changes in the 

function of the gut microbiota can modify the makeup of the BA 

pool and thus its signaling capacity (35). BAs have been discov-

ered in the brains of humans and rodents, and their receptors and 

transporters are expressed in CNS cells (36, 37). This shows that 

BAs may function as signaling molecules in the CNS. Although 

our understanding of this signaling potential is limited at the 

moment, it has been demonstrated that deletion of FXR disrupts 

several neurotransmitter systems and alters affective, cognitive, 

and motor abilities in mice (38). 

By breaking tight junctions, BAs can directly modify the 

permeability of the gut and blood-cerebrospinal fluid barrier, 

consequently impacting brain function (39). Neither DCA nor 

CDCA have been shown to increase the permeability of the 

blood-cerebrospinal fluid barrier, but UDCA has been shown to 

protect brain endothelial cells by inhibiting apoptosis (40). BA 

may also have an effect on the immunological response, as 

UDCA has been shown to diminish neuroinflammation in rats 

by binding to the TGR5 protein produced by microglia (41). 

Alternatively, BA can communicate with the CNS via activating 

FXR in the gut, hence increasing the production of intermediate 

molecules such as GLP-1 and fibroblast growth factor 19 

(FGF19) (42). GLP-1 has the ability to enter the bloodstream, 

activate brain receptors, and transmit to the central nervous sys-

tem via vagal afferent fibers (43). Through receptors expressed 

in the hypothalamic arcuate nucleus (ARC), FGF19 can inhibit 

agouti gene-related protein (AGRP) and neuropeptide Y (NPY) 

neurons (44). 

 
Neurotransmitters 
Cellular neurotransmitters are also found in the gastrointestinal 

system and are involved in the regulation of intestinal motility, 

cell secretion, and cell signaling (45). The gut microbiota is 

capable of synthesizing a number of neurotransmitters: Lacto-

bacillus and Bifidobacterium make gamma-aminobutyric acid 

(GABA) (46, 47), E. coli produces serotonin (5-HT) and dopa-

mine (DA) (48), and Lactobacillus produces acetylcholine (49). 

Numerous bacteria generate and release additional neuroactive. 

The gut microbiota has been shown to influence neurotransmit-

ter levels in mouse models, with microbial depletion dramati-

cally lowering neurotransmitter levels such as DA and GABA 

(50). It is unknown whether circulating neurotransmitters origi-

nate directly from the microbiota or the host, as microbial me-

tabolites (e.g. secondary BA, SCFA) have been shown to acti-

vate enterochromaffin cells to create neurotransmitters and enter 

the blood circulation (51). 

Another method in which the gut microbiota influences 

host neurotransmission is through the regulation of neurotrans-

mitter precursors. Tyrosine is a precursor of levodopamine 

(L-DOPA), a neurotransmitter that can be decarboxylated to 

generate dopamine (DA). DA is then converted to other 

catecholamines, including norepinephrine and epinephrine. Ty-

rosine can be received by food or phenylalanine, two amino 

acids that can be broken down into a variety of compounds by 

gut microorganisms, altering their availability to the host. The 

gut microbiota also regulates the conversion of L-DOPA to DA, 

with Enterococcus and Lactobacillus expressing tyrosine decar-

boxylase and participating in the decarboxylation of L-DOPA 

(52). This has significant implications for Parkinson's disease 

treatment, as inhibiting peripheral L-DOPA metabolism can 

enhance brain L-DOPA concentrations. 

By activating the vagus nerve, gut microbial metabolites 

can also alter CNS transmission. The vagus nerve is engaged in 

GABA transmission and Lactobacillus rhamnosus can modify 

the expression of central GABA receptors while alleviating anx-

iety and depression-like symptoms in vagotomized mice (53). 

Gut neurotransmitters can potentially influence brain function 

by influencing the immune system, with 5-HT activating im-

mune cells and GABA reducing intestinal inflammation (54). 

These findings imply that neurotransmitters produced directly or 

indirectly by gut bacteria have an effect on host psychology and 

behavior via their binding to specific receptors in the CNS or on 

peripheral cells. There may be additional active molecules simi-

lar to neurotransmitters that must be discovered and explored 

further. This neurotransmitter metabolic communication be-

tween the gut microbiota and the host is inherently bidirectional: 

in addition to synthesizing neurotransmitters capable of altering 

host physiology, the gut microbiota responds to host-produced 

neurotransmitters, affecting the microbiota's growth and abun-

dance (55). 
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Additional Metabolites of the Gut Microbiota 
Numerous other compounds from the gut microbiome may po-

tentially participate in GBA communication. Choline is an es-

sential nutrient that is derived mostly from lecithin and carnitine 

in the diet, although it is also generated in the liver in modest 

amounts in humans (56). Choline plays a role in biofilm for-

mation, epigenetic regulation, and cell signaling. It is a precur-

sor of acetylcholine and the cell membrane components 

phosphatidylcholine and sphingomyelin. Although choline is not 

a bacterial product, it can be broken down by the gut microbiota 

into a variety of metabolites, including betaine and 

trimethylamine (57, 58). Because the gut microbiota's metabo-

lism of choline depletes the available choline in the host, an 

excess of bacteria consuming choline results in a choline deficit, 

which increases the risk of metabolic disorders and cardiovas-

cular illness, as well as affects the host's neuropsychiatric be-

havior (59). Additionally, choline provides a significant supply 

of methyl groups, which are necessary for proper DNA methyla-

tion regulation. The reduction of choline by bacteria decreased 

methyl availability and DNA methylation in various organs, 

including the brain. 

Lactic acid is an organic acid produced by human meta-

bolic processes and by Lactobacillus, Bifidobacterium, and Pro-

teus fermentations of dietary fiber (60). Although lactate con-

centrations in the gut are modest, they can enter the bloodstream 

and penetrate the blood-cerebrospinal fluid barrier. Lactic acid is 

well known as a signaling molecule in the brain; it serves as an 

energy source for neurons, contributes to synaptic plasticity, and 

is involved in memory formation (61). Astrocytic lactate acts as 

an energy substrate to fuel learning-induced de novo neuronal 

translation critical for long-term memory (62). Lactate influ-

ences emotional behavior via directly activating 

G-protein-coupled receptor 81 (GPR81), which is found in the 

hippocampus, neocortex, and cerebellum (63). Lactate regulates 

lipid and glucose metabolism, has anti-inflammatory effects via 

GPR81 activation, and inhibits GABAergic neurotransmission 

(64, 65). Although microorganisms have been shown to affect 

central lactate concentrations in germ-free mice, the magnitude 

of these effects on lactate and mood remains unknown (66). 

Vitamins are synthesized in the gut by the gut microbiota, 

and human vitamin metabolism is highly dependent on the 

availability of bacteria (67). B vitamins such as riboflavin (B2), 

folic acid (B9), and cobalamin (B12) are required for central 

metabolic responses and their shortage can appear as a variety of 

neurological symptoms such as aberrant motor function, sleep 

memory abnormalities, and psychological-emotional symptoms 

(68). The microbiome is estimated to provide 31% of the rec-

ommended B12 intake for humans, and B12 deficiency has been 

linked to a variety of psychiatric and neurological diseases, in-

cluding mental retardation, memory impairment, attention defi-

cit, and dementia (69, 70). 

 
Conclusions 
The bidirectional communication between the gut microbiota 

and the mammalian host is the result of these two complimen-

tary systems co-evolving, and this information exchange can 

take place in a variety of ways. Microbial metabolites have the 

potential to alter the CNS directly or indirectly, thus impacting 

host behavior and cognitive function. Our understanding of the 

pathogenic mechanisms behind GBA will continue to grow as 

we delve more into the multifarious relationships between mi-

crobial metabolites and CNS disorders. In the future, microbial 

metabolites having the potential to play critical roles in CNS 

illness treatment and prevention may be exploited.■ 
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