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The gut microbiota is highly capable of biotransformation, exposing the host to a wide variety
of physiologically active compounds. These metabolites participate in signaling between the
gastrointestinal tract and the central nervous system and may regulate physiological and
pathological processes in the central nervous system. This bidirectional communication can
take place in a variety of ways, including binding to receptors in the host brain, stimulating the
vagus nerve in the gut, modifying central neurotransmission, and influencing neuroinflam-
mation. The purpose of this article is to discuss the mechanism of action of microbial metabo-
lites such as short-chain fatty acids, bile acids, and neurotransmitters in the gut-brain axis and
to propose new strategies for treating related neurological illnesses from a gut microbiota
regulation perspective.
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HE human gut microbiota contains between 500 and

1000 species of bacteria and around 2 million genes,

which is more than 100 times the total number of human
genes, many of which encode proteins that conduct metabolic
tasks and create microbial-specific compounds (1). This function
of the microbiota broadens the breadth of host biotransformation
applications and the variety of substances that can be processed.
This extensive metabolic capacity enables the microbiota to
react with a variety of substrates that enter the gut, creating a
huge number of metabolites, many of which are critical molecu-
lar precursors for the host. The gut-brain axis (GBA) is a sig-
naling network that runs in both directions between the gastro-
intestinal tract and the central nervous system (CNS) (2). The

contribute to this axis' signaling. Microbe-associated metabolites
control CNS function and behavior via these diverse routes.
Significant alterations in the structure of the gut microbiota have
been documented in a variety of CNS illnesses, including autism
spectrum disorder (ASD), anxiety, and depression (3). While the
underlying association between microbial changes and neuro-
logical disease is not entirely understood, mouse studies have
demonstrated that changes in the gut microbiome can affect
mental psychology and behavior (4). This review focuses on the
functions and mechanisms of bioactive chemicals generated by
bacteria, such as short-chain fatty acids (SCFASs), bile acids
(BAs), and neurotransmitters, in gut-brain transmission (Figure
1).

autonomic  nervous system (ANS), the hypothalam-
ic-pituitary-adrenal axis (HPA axis), and the immune system all SCFAs
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Figure 1. Interaction between Gut Microbiota and Control Nervous System.

SCFAs are small-molecule organic acids created by bacteria in
the caecum and colon during anaerobic fermentation of dietary
carbohydrates. They have a variety of effects on the central
nervous system. The principal SCFAs created were acetic acid,
propionic acid, and butyric acid, whereas isobutyric acid, valeric
acid, and isovaleric acid were formed in trace levels (5). The
feces of people with a high quality of life have a high concentra-
tion of Faecalibacterium and Coprococcus, which are
gram-positive anaerobic bacteria capable of fermenting dietary
fiber to create SCFAs (6, 7). In comparison to nondepressed
controls, patients with major depressive disorder (MDD) had
reduced SCFA levels in their stool, urine, and plasma (8, 9).
Prebiotic-induced increases in SCFA have been shown to reduce
depressive and anxious behaviors in mice and to alleviate cogni-
tive impairment in dementia model mice (10, 11). SCFAs have
also been implicated in a number of neurodegenerative and cer-
ebrovascular illnesses, including Huntington's disease, Alzhei-
mer's disease, Parkinson's disease, and stroke (12-15).

SCFAs can interact with GBA by binding to
cell-expressed receptors and affecting the expression of host
genes (16). SCFAs have the ability to bind to and activate the
free fatty acid receptors 2, 3 (GPR43 or FFAR2), 2 (GPR41 or
FFAR3), and 2 (GPR109A or HCAR?2) (17). These receptors are
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expressed ubiquitously throughout the human body in a variety
of tissues, including enteroendocrine cells, adipocytes, immune
cells, and neurons. SCFA and GPR43 have host-dependent ef-
fects in the CNS, where microglia are resident macrophages that
are dependent on the gut microbiota for maturation and function,
and SCFA and GPR43 are essential for microglia homeostasis
(18). Additionally, via influencing histone acetylation and meth-
ylation, SCFAs can exert epigenetic control on gene expression
(19).

Enteroendocrine cells can indirectly modulate GBA by
promoting the release of intestinal hormones and peptides by
SCFA (20). SCFAs may also influence feeding behavior by in-
creasing the release of anorectic hormones such as glucagon-like
peptide-1 (GLP-1), peptide YY (PYY), and leptin (21-23).
Along with acting on brain receptors, these appetite hormones
also have an effect on the vagus nerve. The vagus nerve partici-
pates in the gut microbiota's control of hunger by showing that
SCFA's anorectic impact was dramatically reduced in
vagotomized mice (24, 25). SCFAs can also regulate appetite via
central processes. Enteric acetate can pass the blood-cerebro-
spinal fluid barrier and exert a direct effect on appetite regula-
tion in the hypothalamus via neuropeptide expression changes
(26).
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SCFAs also influence GBA via the maintenance of gut
and blood-cerebrospinal fluid barrier function (27). Butyrate has
been shown to increase tight junction protein expression and
stabilize the intestinal mucosal barrier function, hence limiting
the passage of bacteria and other pathogens from the gut to the
blood (28). Increased permeability of the intestinal barrier in-
creases host exposure to bacterial lipopolysaccharide (LPS),
resulting in chronic inflammatory responses. Chronic inflamma-
tion is implicated in a variety of neuropsychiatric illnesses, in-
cluding depression and anxiety, and pro-inflammatory cytokines
have been shown to impact neurotransmission and behavior.
Consistent with their role in the gut, SCFAs can help maintain
the blood-cerebrospinal fluid barrier's integrity by boosting the
expression of tight junctions (29). While SCFAs have been
shown to have a number of direct and indirect effects on the
CNS, the evidence supporting their ability to alleviate neurolog-
ical disorders remains inconsistent, and a greater understanding
of the underlying mechanisms is required.

BAs

BAs are cholesterol-derived steroids that have direct and indi-
rect effects on the central nervous system. The two primary BAs,
cholic acid (CA) and chenodeoxycholic acid (CDCA), are pro-
duced in the liver and subsequently released into bile together
with glycine or taurine (30). BA is released into the gut in re-
sponse to a feeding stimulus, where it is reabsorbed in 95% of
cases. A limited amount of BA is carried to the colon, where it is
7-dehydroxylated by the gut flora to form secondary BAs, espe-
cially deoxycholic acid (DCA) and ursodeoxycholic acid
(UDCA) (31).

As with SCFA, BA can operate as a signaling molecule,
activating the farnesoid X receptor (FXR), the G pro-
tein-coupled bile acid receptor 5 (TGR5), the pregnane X re-
ceptor (PXR), and the vitamin D receptor (VDR) (32, 33). At the
same time, BA regulates glucose homeostasis, lipid metabolism,
and energy expenditure, among other metabolic processes, with
considerable influence on host metabolism (34). Changes in the
function of the gut microbiota can modify the makeup of the BA
pool and thus its signaling capacity (35). BAs have been discov-
ered in the brains of humans and rodents, and their receptors and
transporters are expressed in CNS cells (36, 37). This shows that
BAs may function as signaling molecules in the CNS. Although
our understanding of this signaling potential is limited at the
moment, it has been demonstrated that deletion of FXR disrupts
several neurotransmitter systems and alters affective, cognitive,
and motor abilities in mice (38).

By breaking tight junctions, BAs can directly modify the
permeability of the gut and blood-cerebrospinal fluid barrier,
consequently impacting brain function (39). Neither DCA nor
CDCA have been shown to increase the permeability of the
blood-cerebrospinal fluid barrier, but UDCA has been shown to
protect brain endothelial cells by inhibiting apoptosis (40). BA
may also have an effect on the immunological response, as
UDCA has been shown to diminish neuroinflammation in rats
by binding to the TGRS protein produced by microglia (41).
Alternatively, BA can communicate with the CNS via activating
FXR in the gut, hence increasing the production of intermediate
molecules such as GLP-1 and fibroblast growth factor 19
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(FGF19) (42). GLP-1 has the ability to enter the bloodstream,
activate brain receptors, and transmit to the central nervous sys-
tem via vagal afferent fibers (43). Through receptors expressed
in the hypothalamic arcuate nucleus (ARC), FGF19 can inhibit
agouti gene-related protein (AGRP) and neuropeptide Y (NPY)
neurons (44).

Neurotransmitters

Cellular neurotransmitters are also found in the gastrointestinal
system and are involved in the regulation of intestinal motility,
cell secretion, and cell signaling (45). The gut microbiota is
capable of synthesizing a number of neurotransmitters: Lacto-
bacillus and Bifidobacterium make gamma-aminobutyric acid
(GABA) (46, 47), E. coli produces serotonin (5-HT) and dopa-
mine (DA) (48), and Lactobacillus produces acetylcholine (49).
Numerous bacteria generate and release additional neuroactive.
The gut microbiota has been shown to influence neurotransmit-
ter levels in mouse models, with microbial depletion dramati-
cally lowering neurotransmitter levels such as DA and GABA
(50). It is unknown whether circulating neurotransmitters origi-
nate directly from the microbiota or the host, as microbial me-
tabolites (e.g. secondary BA, SCFA) have been shown to acti-
vate enterochromaffin cells to create neurotransmitters and enter
the blood circulation (51).

Another method in which the gut microbiota influences
host neurotransmission is through the regulation of neurotrans-
mitter precursors. Tyrosine is a precursor of levodopamine
(L-DOPA), a neurotransmitter that can be decarboxylated to
generate dopamine (DA). DA is then converted to other
catecholamines, including norepinephrine and epinephrine. Ty-
rosine can be received by food or phenylalanine, two amino
acids that can be broken down into a variety of compounds by
gut microorganisms, altering their availability to the host. The
gut microbiota also regulates the conversion of L-DOPA to DA,
with Enterococcus and Lactobacillus expressing tyrosine decar-
boxylase and participating in the decarboxylation of L-DOPA
(52). This has significant implications for Parkinson's disease
treatment, as inhibiting peripheral L-DOPA metabolism can
enhance brain L-DOPA concentrations.

By activating the vagus nerve, gut microbial metabolites
can also alter CNS transmission. The vagus nerve is engaged in
GABA transmission and Lactobacillus rhamnosus can modify
the expression of central GABA receptors while alleviating anx-
iety and depression-like symptoms in vagotomized mice (53).
Gut neurotransmitters can potentially influence brain function
by influencing the immune system, with 5-HT activating im-
mune cells and GABA reducing intestinal inflammation (54).
These findings imply that neurotransmitters produced directly or
indirectly by gut bacteria have an effect on host psychology and
behavior via their binding to specific receptors in the CNS or on
peripheral cells. There may be additional active molecules simi-
lar to neurotransmitters that must be discovered and explored
further. This neurotransmitter metabolic communication be-
tween the gut microbiota and the host is inherently bidirectional:
in addition to synthesizing neurotransmitters capable of altering
host physiology, the gut microbiota responds to host-produced
neurotransmitters, affecting the microbiota's growth and abun-
dance (55).
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Additional Metabolites of the Gut Microbiota
Numerous other compounds from the gut microbiome may po-
tentially participate in GBA communication. Choline is an es-
sential nutrient that is derived mostly from lecithin and carnitine
in the diet, although it is also generated in the liver in modest
amounts in humans (56). Choline plays a role in biofilm for-
mation, epigenetic regulation, and cell signaling. It is a precur-
sor of acetylcholine and the cell membrane components
phosphatidylcholine and sphingomyelin. Although choline is not
a bacterial product, it can be broken down by the gut microbiota
into a variety of metabolites, including betaine and
trimethylamine (57, 58). Because the gut microbiota's metabo-
lism of choline depletes the available choline in the host, an
excess of bacteria consuming choline results in a choline deficit,
which increases the risk of metabolic disorders and cardiovas-
cular illness, as well as affects the host's neuropsychiatric be-
havior (59). Additionally, choline provides a significant supply
of methyl groups, which are necessary for proper DNA methyla-
tion regulation. The reduction of choline by bacteria decreased
methyl availability and DNA methylation in various organs,
including the brain.

Lactic acid is an organic acid produced by human meta-
bolic processes and by Lactobacillus, Bifidobacterium, and Pro-
teus fermentations of dietary fiber (60). Although lactate con-
centrations in the gut are modest, they can enter the bloodstream
and penetrate the blood-cerebrospinal fluid barrier. Lactic acid is
well known as a signaling molecule in the brain; it serves as an
energy source for neurons, contributes to synaptic plasticity, and
is involved in memory formation (61). Astrocytic lactate acts as
an energy substrate to fuel learning-induced de novo neuronal
translation critical for long-term memory (62). Lactate influ-
ences emotional  behavior via directly  activating
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