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The severe aerodynamic heating that occurs when a spacecraft reenters the atmosphere takes
place. The material used for thermal protection is an essential part of the system used for
thermal protection. A number of chemical and physical transformations take place in the abla-
tion heat-resistant material that is based on resin. This material is an organic polymer. We
herein briefly review the status quo of low-density resin-based ablative heat protection materi-

als.
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HEN a spacecraft reenters the atmosphere, intense

aerodynamic heating ensues. The thermal protection

system is one of the major subsystems that must be
relied on to ensure the normal operation of the aircraft’s elec-
tronic components and manned spaces, and thermal protection
material is an integral component of the thermal protection sys-
tem (1). The thermal environment becomes more severe with
increasing reentry velocity (2). When the pneumatic heating
time exceeds 1,000 seconds, the heating quantity increases sig-
nificantly, a large area is exposed to the high temperature (1,000
) of a long-term aerobic environment, and the instantaneous
temperature of the essential components can reach more than
2,000 €.

Since the 1950s, spacecraft thermal protection material
systems and thermal protection procedures have undergone con-
tinual development, particularly ultra-lightweight, reusable
thermal protection materials, such as ceramic tiles and TUFROC
(3). It has been effectively implemented and has garnered con-
siderable interest from scientists and engineers. However, in
general, these materials have poor reliability, a high price, a
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difficult manufacturing process, and high maintenance expenses,
which restricts their widespread use in aeronautical vehicles (4).
Resin-based ablation heat-resistant material is based on organic
polymer and undergoes a series of chemical and physical
changes, sacrificing the quality of the material in order to re-
move a great deal of aerodynamic heat and therefore achieve its
intended purpose (5). Due to its high dependability, excellent
cost performance, and simple assembly procedure, it is still re-
garded as the most effective, reliable, mature, and cost-efficient
way of thermal protection.

Low-Density Resin-Based Ablative Heat Pro-
tection Material

Honeycomb Reinforced Low Density Heat
Protection Material

H88 and H96 materials are supported by a glass fiber reinforced
plastic honeycomb lattice, phenyl silicone rubber as the resin
matrix, doped with quartz short fibers, phenolic microspheres,
glass microspheres, and other lightweight functional fillers by
physical blending, and rapidly filled by an integral molding
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process into the fiberglass honeycomb lattice (6). The inclusion
of lightweight functional fillers is primarily employed to de-
crease material density and thermal conductivity, while ensuring
the surface’s resistance to airflow erosion (7). FG4 and FG5
materials with densities of approximately 0.4 g/cm3 and 0.5
g/lcm3 were developed, and the thermal conductivity at room
temperature was less than or equal to 0.1 W/ (meK) for the
low-to-medium heat flow area on the leeward side of the reflec-
tor side wall (8). In the high heat flow region of the heat-proof
outsole of the returner, 0.5 g/cm3 and 0.7 g/cm3 HC5 and FG7
materials with a thermal conductivity of 0.10-0.12 W/(m<K) at
room temperature were produced (9). This is to improve the
ablation performance and shear resistance of thermal protection
materials at high stagnation points.

Thermal Insulation Integrated Low-Density
Resin-Based Thermal Insulation Material

In the 1990s, aerospace powers dominated by the United States
developed successively new models to meet the heat protection
and heat insulation requirements of advanced spacecraft such as
those used for deep space exploration and the space shuttle, and
to further compress the mass ratio of the heat protection system
in the overall system (10). Typical examples of thermal insula-
tion integrated ultra-low density ablation thermal protection
materials include PhenCarb, BLA, SCRAM, PICA, and SIRCA.
This category of materials is distinguished by its ultra-low den-
sity (0.35 g/cm3), ultra-low thermal conductivity, and compati-
bility with thermal and thermal insulation (11).

The SPQ family of medium and low density
quartz/phenolic, glass/phenolic system heat-resistant materials
were created using the oblique winding molding method. The
primary characteristic of SPQ material is that a large amount of
lightweight functional fillers, such as phenolic microspheres,
glass microspheres, and ceramic powders, are added to the phe-
nolic resin matrix, and a two-dimensional fabric woven from
quartz fibers and functional fibers is used as the reinforcing
phase to produce lightweight functional fillers (12). By modify-
ing the composition of the reinforcement and resin matrix, hy-
brid prepreg can be used to produce SPQ series materials that
meet various heat protection criteria (13). The incorporation of
hollow spheres and micropores can dramatically reduce the heat
conductivity and density of the material, respectively. SPQ se-
ries materials are inherited materials that have been enhanced by
the conventional oblique winding molding procedure (14).
Compared to traditional dense glass/phenolic, quartz/phenolic
heat-resistant composite materials, the density of SPQ materials
can be reduced by a maximum of 43%, and the
room-temperature heat conductivity is reduced to approximately
50% of that of traditional heat-resistant materials (15). SPQ
materials have been successfully applied to the thermal protec-
tion of key components of lunar orbital returners, weapons, and
equipment.

To address the requirements of new aerospace vehicles for
weight reduction, heat protection, heat insulation, and radar
stealth, a lightweight heat protection/heat insulation/stealth inte-
grated material (HRC) was created. To meet the thermal load
requirements of important thermal protection components of
spacecraft at high temperature, we must create a
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heat-resistant/heat-insulating/load-bearing integrated composite
material (HIS) with a density of 1.2 g/cm3 (16). A multifunc-
tional integrated material of heat-resistant/heat-insulation/flame
retardant has been invented to address the phenomenon of open
flame burning when the heat-proof skirt material of the launch
vehicle engine is ignited (17). This material effectively solves
the problem of the open flame of the heat-proof skirt when the
rocket engine is ignited.

With the continual development of advanced aerospace
vehicles and flight control technology, the aircraft’s ballistic
procedures and flight thermal environment are growing more
diversified and complicated, and the functional requirements for
heat-resistant materials are becoming more demanding. Thermal
technology is an indispensable technical instrument for simulta-
neously solving the complex thermal protection system of future
spacecraft.

Research Prospect of Low-Density Res-
in-Based Ablative Heat-Resistant Materials
Multifunctional Compatibility and Integration
The heat-resistant material is the outermost component of the
re-entry spacecraft and serves as a barrier against the
aero-thermal environment (18). In addition to meeting the re-
quirements for aerodynamics and heat resistance, it must also
possess thermal insulation, anti-scour, thermal bearing, and aer-
odynamic dimensions. Due to the increasingly severe flight
thermal environment of spacecraft, the continuous extension of
heating time, and the stringent quality requirements of thermal
protection systems, the development trend of low-density res-
in-based ablative heat-resistant materials must be to achieve
thermal protection on the basis of lightness (19). Compatibility
and integration of multiple functions, including thermal insula-
tion, aerodynamic shape, thermal bearing, stealth, and flame
resistance, are crucial for the novel materials. The future devel-
opment trend of low-density resin-based ablative thermal com-
posite materials is to reduce the costs of thermal protection sys-
tem design, assembly, and maintenance.

Synergy of Multiple Thermal Protection
Mechanisms

Ablation and heat protection materials endure a series of com-
plex physical and chemical responses in the aerodynamic ther-
mal environment, are closely connected to the thermal environ-
ment, and undergo an unstable mass transfer and heat transfer
process (20). The investigation of thermal mechanism has tradi-
tionally been regarded as the most difficult field of inquiry.
During the ablation process of the material, a significant amount
of aerodynamic heat heats the surface of the material via con-
vection and radiation, followed by a complex chemical reaction
in which the resin matrix decomposes and absorbs a significant
amount of incoming heat, and the pyrolysis product forms a
porous carbonized layer. It is of great importance to clarify the
mechanism of various thermal protection mechanisms in the
resin-based ablation thermal protection material during the en-
tire thermal protection process and the proportion in the total
thermal effect, reveal the mutual coupling between various
thermal protection mechanisms, and demonstrate unstable com-
bustion (21). The process of heat and mass transfer within the
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material body during the ablation process, gaining an under-
standing of the relationship between the microstructure and
performance of the material, and contributing to the realization
of synergy and matching between the heat protection, heat insu-
lation, and other functions of the low-density resin-based abla-
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