Cognitive function and hypothyroidism are strongly associated, and age-related differences in performance are significant. The association between hypothyroidism and cognitive impairment in adult patients is still debatable, although it is most severe in the fetus and neonatal period, where it is easy to leave lasting sequelae. Current theories postulate that the various age-related manifestations of this cognitive impairment may be linked to the various stages of hypothyroidism during the time-dependent development of the neurological system. Although the precise mechanism is still not entirely understood, it might be connected to immunological factors.

Keywords: Hypothyroidism; Cognitive Function; Correlation; Age

Hypothyroidism and Cognitive Impairment in Fetuses, Babies, and Kids

Thyroid hormones are a big part of how the central nervous system grows and develops, and they have a bigger effect on the nervous system than on the rest of the body (1). Studies have shown that thyroid dysfunction is linked to problems with thinking and with the way the nervous system works (2). When a baby is born without enough thyroid hormone, it is often called cretinism (3). When it starts in childhood, it is called juvenile hypothyroidism, and when it starts in adulthood, it is often called adult hypothyroidism. The main signs of cretinism are mental retardation, a decline in cognitive skills, and a slowing of nerve reflexes (4). Even though hypothyroidism in adults can cause brain damage, their performance is very different from that of children. Based on this, this review discusses how hypothyroidism can affect people of different ages in different ways and how that might happen.
a child’s brain. The earlier the onset of hypothyroidism, the more difficult it is to treat and the more nerve damage it causes. If a mother does not have enough thyroid hormone in the early stages of pregnancy, the baby may have lifelong problems like mental retardation, cognitive decline, and trouble moving. Hypothyroidism during pregnancy can cause mental and neurological symptoms in the fetus that are similar to cretinism after birth, but the only studies that have been done are observational, and the exact mechanism needs to be figured out (8, 9). The symptoms of childhood hypothyroidism are similar to those of mental retardation, but they are less severe than those of cretinism. Also, the most common symptom in children is growth retardation, not neurological developmental disorders.

In terms of clinical treatment, children with hypothyroidism need to get their thyroid hormone levels back into the normal range as soon as possible to prevent damage to their growth and development. Reasonable thyroid hormone replacement therapy can reduce this damage. However, long-term excessive use of thyroid hormone replacement therapy may cause hyperthyroidism in children (the younger they are, the higher the risk), and the risk of attention deficit increases (10). This means that the dose of thyroid hormone is different, as is the long-term prognosis, but the optimal dose is still unknown (11, 12).

Positive thyroid autoantibodies, such as thyroid peroxidase antibody (TPOAb) or antithyroglobulin antibody, can be a sign of primary hypothyroidism (TgAb). Studies showed that thyroid autoantibodies can affect how the nervous system grows and develops (13). A mother’s high TSH level, low FT4, and high TPOAb titer were all independent risk factors for slowing their child’s intellectual and motor development (14). Even though it has not been proven that TPOAb can hurt the thyroid function of a fetus, previous studies have shown that TPOAb is an indicator of poor thyroid gland development (15). So, the thyroid works normally during pregnancy, but the TPOAb titer is high, which means the baby is more likely to have nerve damage (16). Cohort studies have shown that even if pregnant women with positive TPOAb titers are given levothyroxine (L-T4) to bring their TSH levels back to normal, their children are still at a much higher risk for ADHD and autism (17). So, immune factors play a significant role in how the nervous system and brain develop in children who don’t have enough thyroid hormone.

Hypothyroidism and Cognitive Impairment in Adults

Epidemiological data show that about 0.3% of adults have clinical hypothyroidism, while about 4.3% have subclinical hypothyroidism (18). Hypothyroidism is one of the main reasons why adults’ minds get worse. Some researchers thought that a lack of thyroid hormone will cause changes in the neural pathways that the hippocampus controls, which could affect cognitive function (19). Some researchers, on the other hand, thought that the cognitive changes caused by thyroid function depend on how much hypothyroidism a person has. For example, mild emotional problems like anxiety and depression may be accompanied by a decline in cognitive function and memory. These changes do not have much to do with neural pathways (20). With clinical hypothyroidism, slow response and memory loss can be signs of cognitive decline, while the link between subclinical hypothyroidism and cognitive decline in adults is still being debated. Some thought that there is a strong link between subclinical hypothyroidism and cognitive impairment. However, some meta-studies have shown that there is no clear evidence that subclinical hypothyroidism is linked to cognitive impairment (21). Also, researchers are becoming more interested in Alzheimer’s disease and Hashimoto’s encephalopathy as they relate to cognitive impairment. However, the current research on these two diseases does not give a clear picture of how adult hypothyroidism is linked to cognitive impairment (22).

Most adults with hypothyroidism have autoimmune thyroiditis, which is one of the causes. Such patients have thyroid autoantibodies and organ-specific autoimmune diseases. There are a lot of autoimmune diseases, and they are linked to many psychological and psychiatric diseases, such as attention deficit disorder, attention and memory impairment, psychomotor retardation, depression, anxiety, and delusions of persecution (23). Hashimoto’s encephalopathy and myxedema coma can make things worse in severe cases (24). In people with Hashimoto’s encephalopathy, cognitive impairment is often caused by an immune inflammatory reaction in the central nervous system, which is different from simple hypothyroidism. This reaction may be combined with cerebral edema. Patient’s autoantibody titer is related to how well glucocorticoids work to treat Hashimoto’s encephalopathy (25). Studies have shown that L-T4 can help people with treatment-resistant depression respond better to antidepressants while correcting hypothyroidism (26). However, the effect of L-T4 on people with autoimmune thyroiditis and positive autoantibodies is still not clear (27). Autoantibodies are a big part of why these patients’ brains do not work as well as they should. As thus, the discovery of TPOAb may help physicians determine how to treat brain autoimmunity by providing them with crucial clinical information.

During treatment, people with central hypothyroidism should make their FT4 value a little bit higher than normal, while people with primary hypothyroidism should keep their serum TSH levels within the normal reference range (28). Studies, however, have shown that cognitive function and mental health problems in adults with hypothyroidism may not be completely fixed by thyroid hormone replacement therapy (29). But animal studies have shown that if mice are without thyroid hormone for a short time, replacement therapy can bring back some brain functions that depend on the hippocampus (30). Some hippocampally dependent functions, like classical conditioning, can be restored with thyroid hormone therapy after a brief period of adult hypothyroidism, but not other hippocampal properties, like the synaptic plasticity elicited during associative learning and during experimentally induced long-term potentiation (31). Some believe that the small improvement in cognitive function after replacement therapy may be due to the fact that thyroid hormone deficiency changes the structure of the brain in a way that cannot be changed back. It may also be due to the fact that exogenous thyroid hormone is not very bioavailable in the central nervous system (32).

Senile Hypothyroidism and Cognitive Impairment

https://bonoi.org/index.php/si
The elderly are more likely to have hypothyroidism (33). Due to less thyroid hormone being made, the brain cells’ ability to use oxygen and glucose will slow down. This can make older people feel tired and forgetful. Statistics show that about two-thirds of older people with hypothyroidism have trouble remembering things and paying attention (34). If you look closely, there is a difference between how people with hypothyroidism and people with senile dementia act. People with hypothyroidism often have swollen faces, necks, wrists, and ankles; eyelids that are loose and hang down; and a slow heart rate, and it can get better when you take thyroxine tablets (35), but people with senile dementia often have problems with their memory and personality that don’t get better when they take thyroxine drugs (36).

Mild cognitive impairment (MCI) is a stage in the decline of brain function between normal and dementia. MCI patients have a much higher chance than the rest of the population of getting dementia in the next few years (37). Even though this study did not find a link between hypothyroidism and cognitive decline before dementia, the fact that it was a cross-sectional study does not mean that hypothyroidism can’t be used to predict the progression of MCI to clinical dementia (38).

Potential Mechanism of Cognitive Impairment in Hypothyroidism

The amount of cognitive impairment in people with hypothyroidism is related to how long they did not have enough thyroid hormone while their nervous systems were developing. This effect is time- and dose-dependent. During the development of the nervous system, especially in the first trimester, the fetal nervous system needs thyroid hormone, which comes from the mother until the fetal thyroid matures and can make enough of its own. Thyroid hormones help the nervous system develop by taking part in the growth and movement of neurons, the differentiation of neurons and glial cells, and the creation of new connections between neurons (39). A lack of thyroid hormone can also change the brain’s chemical structure and properties. Studies have confirmed that a lack of thyroid hormones in the brain microenvironment can cause a drop in monoamines like epinephrine and norepinephrine (40), and an increase in γ-aminobutyric acid (41). Furthermore, metabolites of thyroid hormones, like 3′-iodothyronine (T1AM), can also have important effects on the central nervous system (42). In a dose-dependent way, T1AM can stop thyroid hormones from moving through the blood-brain barrier by organic anion-transporting polypeptide 1C1 (OATP1C1) and monocarboxylate transporter 8 (MCT8), which changes the way thyroid hormones work in the central nervous system (43). Studies on animals have shown that T1AM can help coordinate how the brain sends and receives signals and how it learns and remembers things. It does this by activating mitochondrial ATP synthase and the trace amine-associated receptor 1 (TAAR1) (44, 45). Also, thyroid hormones can change the way myelin proteins are made, so they are essential to the formation of myelin (46).

In the early stages of embryonic development, thyroid hormones can affect not only brain molecules and functional pathways but also structures like the cerebral cortex, hippocampus, and cerebellum (2). If the lack of thyroid hormone is not fixed after the baby is born, it will cause damage to the nervous system that cannot be fixed. The symptoms of hypothyroidism in adults are not severe. Some feel that the memory loss induced by hypothyroidism in adults is primarily due to hypoxia, or decreased blood flow to the brain (47). Patients in this age group may have a decline in all of their cognitive functions, such as language function, logical ability, memory, and some may also feel tired. If the person is old, it could be mistakenly thought that they have Alzheimer’s disease. At the same time, adults are more likely than children to have emotional problems, which usually show up as depression, paranoia, or excitement. It has been said that there is a strong link between hypothyroidism in adults and Alzheimer’s disease (48). As people get older, they are more likely to get hypothyroidism, and their risk of getting Alzheimer’s disease also goes up a lot. Researchers in the field have proposed a possible explanation, which is that thyroid hormone can regulate the expression of the amyloid gene and alter how brain tissue functions. But some researchers think that hypothyroidism does not have much to do with cognitive function or Alzheimer’s disease (49). So, the link between hypothyroidism in adults and Alzheimer’s disease is still up for debate.

Most studies on cognitive decline in people with hypothyroidism caused by immune factors have been done on adults, and there are not many studies on fetal, infant, or child patients. Studies have shown that the effect of high titers of TPOAb on cognition in the fetus may be related to the change in gray matter volume (50), but there is still no solid evidence, and more studies are needed right away to prove the link between brain function and structural changes and immune-related factors in children with hypothyroidism. Some believed that high titers of TPOAb in adults with thyroiditis can cause T cells to make more helper T cells or cytotoxic T cell 1 cytokines (51). This change in the immune system can affect how neurotransmitters like serotonin, dopamine, and glutamate are made, released, and taken back up. These cytokines take tryptophan, an amino acid that helps make serotonin, and turn it into neuroactive metabolites that have a big effect on how dopamine and glutamate are regulated. People with positive thyroid autoantibodies have an uneven flow of blood to the parietal lobe compared to people with negative autoantibodies. This uneven flow can cause mental decline and emotional problems (52).

Moreover, people with pituitary stalk interruption syndrome (PSIS) can get central hypothyroidism early in life, but they usually have slow growth and/or low sexual development, and their cognitive function is not significantly affected (53, 54). This means that mental decline like cretinism does not happen very often. So far, no studies have found a link between hypothyroidism and how well PSIS patients think. Patients with PSIS may have hypofunction of all or part of the pituitary axis, which is different from patients with simple congenital hypothyroidism, and there are more different types of symptoms. Patients with PSIS are less likely to have autoimmune diseases at the same time as people with chronic lymphocytic thyroiditis. This means that hypothyroidism and autoimmune diseases are not usually linked. As thus, some of the reasons why people with PSIS have less severe cognitive function problems than people with autoimmune-mediated hypothyroidism may be: (i) When damage to the pituitary axis is added to other types of damage to the pituitary axis, the body can’t grow and develop normally and keep
the brain working normally. There is a corresponding drop in the need for thyroid hormones, which may be caused by the complicated way that hormones in the body work together. When there is a lack of growth hormone at the same time, the signs of hypothyroidism are often hard to see; when growth hormone is added to the body in a natural way, hypothyroidism symptoms will show up. (ii) Hypothyroidism in PSIS patients is mostly caused by mechanical damage to the pituitary stalk. Its cause is not an autoimmune disease, and more research is needed to figure out how it happens.

Conclusion

The development of the central nervous system depends on thyroid hormones, so thyroid function is closely linked to cognitive function. Hypothyroidism, on the other hand, can cause different levels of brain damage and physical symptoms in people of different ages. Patients who are still in the womb or just born may have irreversible cognitive impairment if they don’t get thyroid hormone supplementation right away, but the opposite is true for adults. Different age groups have different levels of impairment in cognitive function, and the thyroid function is closely linked to cognitive function. Hypothyroidism, on the other hand, can cause different levels of brain damage and physical symptoms in people of different ages. Patients who are still in the womb or just born may have irreversible cognitive impairment if they do not get thyroid hormone supplementation right away, but the opposite is true for adults. Different age groups have different levels of impairment in cognitive function. This has to do with how long they were without enough thyroid hormone and is closely linked to immune factors. Some studies suggest that the presence of TPOAB in people with hypothyroidism may be an important sign of damage to the nervous system. Hypothyroidism doesn’t usually cause obvious mental retardation in PSIS patients, but there is no research report on this, and its mechanism still needs more basic research and/or large-sample, multi-center clinical research to prove it.

References

30. Fu A, Zhou R, Xu X. The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice. Neural Regen Res 2014; 9(8):864-71. DOI: https://doi.org/10.4103/1673-5374.131602

36. de Jong FJ, Masaki K, Chen H, Remaley AT, Breteler MM, Petrovitch H, White LR, Launer LJ. Thyroid

41. Wiens SC, Trudeau VL. Thyroid hormone and gamma-aminobutyric acid (GABA) interactions in neuro-endocrine systems. Comp Biochem Physiol A Mol Integr Physiol 2006; 144(3):332-344. DOI: https://doi.org/10.1016/j.cbpa.2006.01.033

Received: November 10, 2022 | Revised: January 11, 2023 | Accepted: January 15, 2023