##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Apr 28, 2023

Liv Dahl  

Abstract

Transforming growth factor-β (transforming growth factor-β, TGF-β) is a cytokine with multifunctional biological activities. It is highly expressed in a variety of tumors and is closely related to the occurrence, development, and prognosis of tumors. In most cells, TGF-β1 can conduct signal transduction through the classical pathway (depending on Smad) and the non-canonical pathway (independent of Smad), exerting its biological effects. Studies have shown that TGF-β1 mainly affects the development of tumors through epithelial-mesenchymal transition, immune cells in the tumor microenvironment, and carcinoembryonic antigen receptors. Elucidating the molecular mechanism of TGF-β1 carcinogenesis will provide new therapeutic methods to prevent tumor recurrence and delay its metastasis.

##plugins.themes.bootstrap3.article.details##

Keywords

Transforming Growth Factor-β1, Neoplasm, Epithelial-Mesenchymal Transition, Prognosis, Mechanism

References
1. Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med 2019; 8(12):5574-5576. DOI: https://doi.org/10.1002/cam4.2474

2. Morris RM, Mortimer TO, O’Neill KL. Cytokines: Can cancer get the message? Cancers (Basel) 2022; 14(9):2178. DOI: https://doi.org/10.3390/cancers14092178

3. Wrana JL. Signaling by the TGFβ superfamily. Cold Spring Harb Perspect Biol 2013; 5(10):a011197. DOI: https://doi.org/10.1101/cshperspect.a011197

4. Tamayo E, Alvarez P, Merino R. TGFβ superfamily members as regulators of B cell development and function-implications for autoimmunity. Int J Mol Sci 2018; 19(12):3928. DOI: https://doi.org/10.3390/ijms19123928

5. Yang L, Pang Y, Moses HL. TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol 2010; 31(6):220-227. DOI: https://doi.org/10.1016/j.it.2010.04.002

6. Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019; 50(4):924-940. DOI: https://doi.org/10.1016/j.immuni.2019.03.024

7. de Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev 2004; 15(1):1-11. DOI: https://doi.org/10.1016/j.cytogfr.2003.10.004

8. Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA. Latent TGF-β structure and activation. Nature 2011; 474(7351):343-349. DOI: https://doi.org/10.1038/nature10152

9. Prud’homme GJ. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 2007; 87(11):1077-1091. DOI: https://doi.org/10.1038/labinvest.3700669

10. Poniatowski ŁA, Wojdasiewicz P, Gasik R, Szukiewicz D. Transforming growth factor Beta family: Insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm 2015; 2015:137823. DOI: https://doi.org/10.1155/2015/137823

11. Wieser R, Wrana JL, Massagué J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 1995; 14(10):2199-2208. DOI: https://doi.org/10.1002/j.1460-2075.1995.tb07214.x

12. Hata A, Chen YG. TGF-β Signaling from receptors to Smads. Cold Spring Harb Perspect Biol 2016; 8(9):a022061. DOI: https://doi.org/10.1101/cshperspect.a022061

13. Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol 2017; 9(3):a022095. DOI: https://doi.org/10.1101/cshperspect.a022095

14. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res 2009; 19(1):128-139. DOI: https://doi.org/10.1038/cr.2008.328

15. Wang J, Xiang H, Lu Y, Wu T. Role and clinical significance of TGF β1 and TGF βR1 in malignant tumors (Review). Int J Mol Med 2021; 47(4):55. DOI: https://doi.org/10.3892/ijmm.2021.4888

16. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-β - An excellent servant but a bad master. J Transl Med 2012 ; 10:183. DOI: https://doi.org/10.1186/1479-5876-10-183

17. Zhang Y, Alexander PB, Wang XF. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol 2017; 9(4):a022145. DOI: https://doi.org/10.1101/cshperspect.a022145

18. Wang J, Wang Y, Wang Y, Ma Y, Lan Y, Yang X. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium. J Biol Chem 2013; 288(15):10418-10426. DOI: https://doi.org/10.1074/jbc.M112.444463

19. Taylor MA, Lee YH, Schiemann WP. Role of TGF-β and the tumor microenvironment during mammary tumorigenesis. Gene Expr 2011; 15(3):117-132. DOI: https://doi.org/10.3727/105221611x13176664479322

20. Haque S, Morris JC. Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother 2017; 13(8):1741-1750. DOI: https://doi.org/10.1080/21645515.2017.1327107

21. Yang Y, Yang HH, Tang B, Wu AML, Flanders KC, Moshkovich N, Weinberg DS, Welsh MA, Weng J, Ochoa HJ, Hu TY, Herrmann MA, Chen J, Edmondson EF, Simpson RM, Liu F, Liu H, Lee MP, Wakefield LM. The outcome of TGFβ antagonism in metastatic breast cancer models in vivo reflects a complex balance between tumor-suppressive and proprogression activities of TGFβ. Clin Cancer Res 2020; 26(3):643-656. DOI: https://doi.org/10.1158/1078-0432.CCR-19-2370

22. Jin L, Han B, Siegel E, Cui Y, Giuliano A, Cui X. Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biol Ther 2018; 19(10):858-868. DOI: https://doi.org/10.1080/15384047.2018.1456599

23. Othman A, Winogradzki M, Lee L, Tandon M, Blank A, Pratap J. Bone metastatic breast cancer: Advances in cell signaling and autophagy related mechanisms. Cancers (Basel) 2021; 13(17):4310. DOI: https://doi.org/10.3390/cancers13174310

24. Micalizzi DS, Wang CA, Farabaugh SM, Schiemann WP, Ford HL. Homeoprotein Six1 increases TGF-beta type I receptor and converts TGF-beta signaling from suppressive to supportive for tumor growth. Cancer Res 2010; 70(24):10371-10380. DOI: https://doi.org/10.1158/0008-5472.CAN-10-1354

25. Salvo E, Garasa S, Dotor J, Morales X, Peláez R, Altevogt P, Rouzaut A. Combined targeting of TGF-β1 and integrin β3 impairs lymph node metastasis in a mouse model of non-small-cell lung cancer. Mol Cancer 2014; 13:112. DOI: https://doi.org/10.1186/1476-4598-13-112

26. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6):1420-1428. DOI: https://doi.org/10.1172/JCI39104. Erratum in: J Clin Invest 2010; 120(5):1786.

27. Hao Y, Baker D, Ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 2019; 20(11):2767. DOI: https://doi.org/10.3390/ijms20112767

28. Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 2009; 85(8):314-323. DOI: https://doi.org/10.2183/pjab.85.314

29. Wang Y, Zhou BP. Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer 2011; 30(9):603-611. DOI: https://doi.org/10.5732/cjc.011.10226

30. Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014; 2014:141747. DOI: https://doi.org/10.1155/2014/141747

31. Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z, Pestell RG, Howell A, Aquila S, Andò S, Martinez-Outschoorn U, Sotgia F, Lisanti MP. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle 2012; 11(16):3019-3035. DOI: https://doi.org/10.4161/cc.21384

32. Shi X, Young CD, Zhou H, Wang X. Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules 2020; 10(12):1666. DOI: https://doi.org/10.3390/biom10121666

33. Liu F, Kong X, Lv L, Gao J. TGF-β1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes. Cancer Lett 2015; 359(2):288-298. DOI: https://doi.org/10.1016/j.canlet.2015.01.030

34. Wendt MK, Allington TM, Schiemann WP. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 2009; 5(8):1145-1168. DOI: https://doi.org/10.2217/fon.09.90

35. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19(2):156-172. DOI: https://doi.org/10.1038/cr.2009.5

36. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3):178-196. DOI: https://doi.org/10.1038/nrm3758

37. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 2008; 283(48):33437-33446. DOI: https://doi.org/10.1074/jbc.M802016200

38. Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, Crystal RG, de Herreros AG, Moustakas A, Pettersson RF, Fuxe J. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 2009; 11(8):943-950. DOI: https://doi.org/10.1038/ncb1905

39. Bu F, Liu X, Li J, Chen S, Tong X, Ma C, Mao H, Pan F, Li X, Chen B, Xu L, Li E, Kou G, Han J, Guo S, Zhao J, Guo Y. TGF-β1 induces epigenetic silence of TIP30 to promote tumor metastasis in esophageal carcinoma. Oncotarget 2015; 6(4):2120-2133. DOI: https://doi.org/10.18632/oncotarget.2940

40. Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 2021; 14(1):55. DOI: https://doi.org/10.1186/s13045-021-01053-x

41. Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest 2014; 124(2):466-472. DOI: https://doi.org/10.1172/JCI70050

42. Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β family signaling in mesenchymal differentiation. Cold Spring Harb Perspect Biol 2018; 10(5):a022202. DOI: https://doi.org/10.1101/cshperspect.a022202

43. Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol 2016; 28(8):401-409. DOI: https://doi.org/10.1093/intimm/dxw025

44. Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. Stromal modulators of TGF-β in cancer. J Clin Med 2017; 6(1):7. DOI: https://doi.org/10.3390/jcm6010007

45. Wan YY, Flavell RA. ‘Yin-Yang’ functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev 2007; 220:199-213. DOI: https://doi.org/10.1111/j.1600-065X.2007.00565.x

46. Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H, Shevach EM. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 2002; 196(2):237-246. DOI: https://doi.org/10.1084/jem.20020590

47. Zheng SG. The Critical Role of TGF-beta1 in the Development of Induced Foxp3+ Regulatory T Cells. Int J Clin Exp Med 2008; 1(3):192-202.

48. Donkor MK, Sarkar A, Li MO. TGF-β1 produced by activated CD4(+) T cells antagonizes T cell surveillance of tumor development. Oncoimmunology 2012; 1(2):162-171. DOI: https://doi.org/10.4161/onci.1.2.18481

49. Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol 2017; 9(12):a022277. DOI: https://doi.org/10.1101/cshperspect.a022277

50. Xue VW, Chung JY, Córdoba CAG, Cheung AH, Kang W, Lam EW, Leung KT, To KF, Lan HY, Tang PM. Transforming growth factor-β: A multifunctional regulator of cancer immunity. Cancers (Basel) 2020; 12(11):3099. DOI: https://doi.org/10.3390/cancers12113099

51. Achyut BR, Yang L. Transforming growth factor-β in the gastrointestinal and hepatic tumor microenvironment. Gastroenterology 2011; 141(4):1167-1178. DOI: https://doi.org/10.1053/j.gastro.2011.07.048

52. Batlle E, Massagué J. Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019; 50(4):924-940. DOI: https://doi.org/10.1016/j.immuni.2019.03.024

53. Li Y, Cao H, Jiao Z, Pakala SB, Sirigiri DN, Li W, Kumar R, Mishra L. Carcinoembryonic antigen interacts with TGF-{beta} receptor and inhibits TGF-{beta} signaling in colorectal cancers. Cancer Res 2010; 70(20):8159-8168. DOI: https://doi.org/10.1158/0008-5472.CAN-10-1073

54. Jensen-Jarolim E, Fazekas J, Singer J, Hofstetter G, Oida K, Matsuda H, Tanaka A. Crosstalk of carcinoembryonic antigen and transforming growth factor-β via their receptors: Comparing human and canine cancer. Cancer Immunol Immunother 2015; 64(5):531-537. DOI: https://doi.org/10.1007/s00262-015-1684-6

55. Katz LH, Li Y, Chen JS, Muñoz NM, Majumdar A, Chen J, Mishra L. Targeting TGF-β signaling in cancer. Expert Opin Ther Targets 2013; 17(7):743-760. DOI: https://doi.org/10.1517/14728222.2013.782287

56. Wang W, Nag SA, Zhang R. Targeting the NF-κB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 2015; 22(2):264-289. DOI: https://doi.org/10.2174/0929867321666141106124315

57. Labbozzetta M, Notarbartolo M, Poma P. Can NF-κB be considered a valid drug target in neoplastic diseases? Our point of view. Int J Mol Sci 2020; 21(9):3070. DOI: https://doi.org/10.3390/ijms21093070

58. Han SU, Kwak TH, Her KH, Cho YH, Choi C, Lee HJ, Hong S, Park YS, Kim YS, Kim TA, Kim SJ. CEACAM5 and CEACAM6 are major target genes for Smad3-mediated TGF-beta signaling. Oncogene 2008; 27(5):675-683. DOI: https://doi.org/10.1038/sj.onc.1210686

59. Ye Z, Hu Y. TGF β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med 2021; 48(1):132. DOI: https://doi.org/10.3892/ijmm.2021.4965

60. Gauldie J, Kolb M, Ask K, Martin G, Bonniaud P, Warburton D. Smad3 signaling involved in pulmonary fibrosis and emphysema. Proc Am Thorac Soc 2006; 3(8):696-702. DOI: https://doi.org/10.1513/pats.200605-125SF

61. Wang Y, Xiang J, Wang J, Ji Y. Downregulation of TGF-β1 suppressed proliferation and increased chemosensitivity of ovarian cancer cells by promoting BRCA1/Smad3 signaling. Biol Res 2018; 51(1):58. DOI: https://doi.org/10.1186/s40659-018-0205-4

62. Bakhshayesh M, Zaker F, Hashemi M, Katebi M, Solaimani M. TGF- β1-mediated apoptosis associated with SMAD-dependent mitochondrial Bcl-2 expression. Clin Lymphoma Myeloma Leuk 2012; 12(2):138-143. DOI: https://doi.org/10.1016/j.clml.2011.12.001

63. Zhang B, Halder SK, Kashikar ND, Cho YJ, Datta A, Gorden DL, Datta PK. Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 2010; 138(3):969-80.e1-e3. DOI: https://doi.org/10.1053/j.gastro.2009.11.004

64. Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci 2018; 14(2):111-123. DOI: https://doi.org/10.7150/ijbs.23230

65. Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The role of TGF-β signaling pathways in cancer and its potential as a therapeutic target. Evid Based Complement Alternat Med 2021; 2021:6675208. DOI: https://doi.org/10.1155/2021/6675208

66. Ramesh S, Wildey GM, Howe PH. Transforming growth factor beta (TGFbeta)-induced apoptosis: The rise & fall of Bim. Cell Cycle 2009; 8(1):11-17. DOI: https://doi.org/10.4161/cc.8.1.7291

67. Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol 2013; 5(2):a008722. DOI: https://doi.org/10.1101/cshperspect.a008722
How to Cite
Dahl, L. (2023). Transforming Growth Factor-β1 and Tumor Development. Science Insights, 42(4), 909–914. https://doi.org/10.15354/si.23.re298
Section
Review