Microglia-Mediated Neuroinflammation in Parkinson’s Disease
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease, and its main pathological feature is the specific reduction of dopamine neurons in the substantia nigra of the midbrain and α-synuclein aggregates. However, the specific molecular mechanism of the degeneration of dopamine neurons in the substantia nigra is still not fully understood. Neuroinflammation is involved in the development of PD, and microglia-mediated neuroinflammation plays an important role in the degeneration of dopamine neurons. This article will review the mechanism of microglia-mediated neuroinflammation in the pathological process of PD, and provide new understanding for the molecular mechanism and treatment of PD.
##plugins.themes.bootstrap3.article.details##
Parkinson’s Disease, Microglia, Neuroinflammation, Neuronal Transmission, Outcomes
2. Frucht SJ. Parkinson disease: An update. Neurologist 2004; 10(4):185-194. DOI: https://doi.org/10.1097/01.nrl.0000131146.08278.a5
3. Chen Z, Rasheed M, Deng Y. The epigenetic mechanisms involved in mitochondrial dysfunction: Implication for Parkinson’s disease. Brain Pathol 2022; 32(3):e13012. DOI: https://doi.org/10.1111/bpa.13012
4. Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and pathogenesis of Parkinson’s syndrome. Annu Rev Pathol 2023; 18:95-121. DOI: https://doi.org/10.1146/annurev-pathmechdis-031521-034145
5. Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The contribution of microglia to neuroinflammation in Parkinson’s disease. Int J Mol Sci 2021; 22(9):4676. DOI: https://doi.org/10.3390/ijms22094676
6. Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia mediated neuroinflammation in Parkinson’s disease. Cells 2023; 12(7):1012. DOI: https://doi.org/10.3390/cells12071012
7. Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 2015; 4:19. DOI: https://doi.org/10.1186/s40035-015-0042-0
8. Ochocka N, Kaminska B. Microglia diversity in healthy and diseased brain: Insights from single-cell omics. Int J Mol Sci 2021; 22(6):3027. DOI: https://doi.org/10.3390/ijms22063027
9. Yin J, Valin KL, Dixon ML, Leavenworth JW. The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. J Immunol Res 2017; 2017:5150678. DOI: https://doi.org/10.1155/2017/5150678
10. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 2016; 173(4):649-665. DOI: https://doi.org/10.1111/bph.13139
11. Vidal-Itriago A, Radford RAW, Aramideh JA, Maurel C, Scherer NM, Don EK, Lee A, Chung RS, Graeber MB, Morsch M. Microglia morphophysiological diversity and its implications for the CNS. Front Immunol 2022; 13:997786. DOI: https://doi.org/10.3389/fimmu.2022.997786
12. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10):136. DOI: https://doi.org/10.3978/j.issn.2305-5839.2015.03.49
13. Ginhoux F, Prinz M. Origin of microglia: Current concepts and past controversies. Cold Spring Harb Perspect Biol 2015; 7(8):a020537. DOI: https://doi.org/10.1101/cshperspect.a020537
14. Chan WY, Kohsaka S, Rezaie P. The origin and cell lineage of microglia: New concepts. Brain Res Rev 2007; 53(2):344-354. DOI: https://doi.org/10.1016/j.brainresrev.2006.11.002
15. Dermitzakis I, Manthou ME, Meditskou S, Tremblay MÈ, Petratos S, Zoupi L, Boziki M, Kesidou E, Simeonidou C, Theotokis P. Origin and emergence of microglia in the CNS-An interesting (hi)story of an eccentric cell. Curr Issues Mol Biol 2023; 45(3):2609-2628. DOI: https://doi.org/10.3390/cimb45030171
16. Wang J, He W, Zhang J. A richer and more diverse future for microglia phenotypes. Heliyon 2023; 9(4):e14713. DOI: https://doi.org/10.1016/j.heliyon.2023.e14713
17. Lively S, Schlichter LC. Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci 2018; 12:215. DOI: https://doi.org/10.3389/fncel.2018.00215
18. Hu S, Chao CC, Ehrlich LC, Sheng WS, Sutton RL, Rockswold GL, Peterson PK. Inhibition of microglial cell RANTES production by IL-10 and TGF-beta. J Leukoc Biol 1999; 65(6):815-821. DOI: https://doi.org/10.1002/jlb.65.6.815
19. Pons V, Rivest S. Beneficial roles of microglia and growth factors in MS, a brief review. Front Cell Neurosci 2020; 14:284. DOI: https://doi.org/10.3389/fncel.2020.00284
20. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016; 44(3):450-462. DOI: https://doi.org/10.1016/j.immuni.2016.02.015
21. Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J Neuroinflammation 2014; 11:98. DOI: https://doi.org/10.1186/1742-2094-11-98
22. Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC. miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 2012; 135(1):73-88. DOI: https://doi.org/10.1111/j.1365-2567.2011.03514.x
23. Zingale VD, Gugliandolo A, Mazzon E. MiR-155: An important regulator of neuroinflammation. Int J Mol Sci 2021; 23(1):90. DOI: https://doi.org/10.3390/ijms23010090
24. Ye J, Guo R, Shi Y, Qi F, Guo C, Yang L. miR-155 regulated inflammation response by the SOCS1-STAT3-PDCD4 axis in atherogenesis. Mediators Inflamm 2016; 2016:8060182. DOI: https://doi.org/10.1155/2016/8060182
25. Aloi MS, Prater KE, Sopher B, Davidson S, Jayadev S, Garden GA. The pro-inflammatory microRNA miR-155 influences fibrillar β-Amyloid1-42 catabolism by microglia. Glia 2021; 69(7):1736-1748. DOI: https://doi.org/10.1002/glia.23988
26. Kim J, Lee HJ, Park SK, Park JH, Jeong HR, Lee S, Lee H, Seol E, Hoe HS. Donepezil regulates LPS and Aβ-stimulated neuroinflammation through MAPK/NLRP3 inflammasome/STAT3 signaling. Int J Mol Sci 2021; 22(19):10637. DOI: https://doi.org/10.3390/ijms221910637
27. Luzina IG, Keegan AD, Heller NM, Rook GA, Shea-Donohue T, Atamas SP. Regulation of inflammation by interleukin-4: A review of “alternatives”. J Leukoc Biol 2012; 92(4):753-764. DOI: https://doi.org/10.1189/jlb.0412214
28. Dawe GB, Yu H, Gu S, Blackler AN, Matta JA, Siuda ER, Rex EB, Bredt DS. α7 nicotinic acetylcholine receptor upregulation by anti-apoptotic Bcl-2 proteins. Nat Commun 2019; 10(1):2746. DOI: https://doi.org/10.1038/s41467-019-10723-x
29. Picciolo G, Pallio G, Altavilla D, Vaccaro M, Oteri G, Irrera N, Squadrito F. β-caryophyllene reduces the inflammatory phenotype of periodontal cells by targeting CB2 receptors. Biomedicines 2020; 8(6):164. DOI: https://doi.org/10.3390/biomedicines8060164
30. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4:575-590. DOI: https://doi.org/10.1016/j.trci.2018.06.014
31. Haase S, Linker RA. Inflammation in multiple sclerosis. Ther Adv Neurol Disord 2021; 14:17562864211007687. DOI: https://doi.org/10.1177/17562864211007687
32. Kübler D, Wächter T, Cabanel N, Su Z, Turkheimer FE, Dodel R, Brooks DJ, Oertel WH, Gerhard A. Widespread microglial activation in multiple system atrophy. Mov Disord 2019; 34(4):564-568. DOI: https://doi.org/10.1002/mds.27620
33. Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 2017; 155:57-75. DOI: https://doi.org/10.1016/j.pneurobio.2016.04.006
34. Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 2013; 4:1562. DOI: https://doi.org/10.1038/ncomms2534
35. Takahashi S, Mashima K. Neuroprotection and disease modification by astrocytes and microglia in Parkinson disease. Antioxidants (Basel) 2022; 11(1):170. DOI: https://doi.org/10.3390/antiox11010170
36. Liu CY, Wang X, Liu C, Zhang HL. Pharmacological targeting of microglial activation: New therapeutic approach. Front Cell Neurosci 2019; 13:514. DOI: https://doi.org/10.3389/fncel.2019.00514
37. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 2019; 20(9):2293. DOI: https://doi.org/10.3390/ijms20092293
38. Chen G, Liu J, Jiang L, Ran X, He D, Li Y, Huang B, Wang W, Liu D, Fu S. Peiminine protects dopaminergic neurons from inflammation-induced cell death by inhibiting the ERK1/2 and NF-κB signalling pathways. Int J Mol Sci 2018; 19(3):821. DOI: https://doi.org/10.3390/ijms19030821
39. Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L. Lipopolysaccharide animal models of Parkinson’s disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health 2020; 4:100060. DOI: https://doi.org/10.1016/j.bbih.2020.100060
40. Choudhury ME, Kigami Y, Tanaka J. Dual roles of microglia in the basal ganglia in Parkinson’s disease. Int J Mol Sci 2021; 22(8):3907. DOI: https://doi.org/10.3390/ijms22083907
41. Reynolds AD, Stone DK, Mosley RL, Gendelman HE. Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol 2009; 182(7):4137-4149. DOI: https://doi.org/10.4049/jimmunol.0803982
42. Gu C, Wang F, Zhang YT, Wei SZ, Liu JY, Sun HY, Wang GH, Liu CF. Microglial MT1 activation inhibits LPS-induced neuroinflammation via regulation of metabolic reprogramming. Aging Cell 2021; 20(6):e13375. DOI: https://doi.org/10.1111/acel.13375
43. Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson’s disease: An update. J Parkinsons Dis 2011; 1(1):19-33. DOI: https://doi.org/10.3233/JPD-2011-11023
44. Beier EE, Neal M, Alam G, Edler M, Wu LJ, Richardson JR. Alternative microglial activation is associated with cessation of progressive dopamine neuron loss in mice systemically administered lipopolysaccharide. Neurobiol Dis 2017; 108:115-127. DOI: https://doi.org/10.1016/j.nbd.2017.08.009
45. Subramaniam SR, Federoff HJ. Targeting microglial activation states as a therapeutic avenue in Parkinson’s disease. Front Aging Neurosci 2017; 9:176. DOI: https://doi.org/10.3389/fnagi.2017.00176
46. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6):918-934. DOI: https://doi.org/10.1016/j.cell.2010.02.016
47. Zhang X, Zhang R, Nisa Awan MU, Bai J. The mechanism and function of glia in Parkinson’s disease. Front Cell Neurosci 2022; 16:903469. DOI: https://doi.org/10.3389/fncel.2022.903469
48. Yu Z, Yang L, Yang Y, Chen S, Sun D, Xu H, Fan X. Epothilone B benefits nigral dopaminergic neurons by attenuating microglia activation in the 6-hydroxydopamine lesion mouse model of Parkinson’s disease. Front Cell Neurosci 2018; 12:324. DOI: https://doi.org/10.3389/fncel.2018.00324
49. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 2018; 12:488. DOI: https://doi.org/10.3389/fncel.2018.00488
50. Gris D, Ye Z, Iocca HA, Wen H, Craven RR, Gris P, Huang M, Schneider M, Miller SD, Ting JP. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 2010; 185(2):974-981. DOI: https://doi.org/10.4049/jimmunol.0904145
51. Guo H, Callaway JB, Ting JP. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21(7):677-687. DOI: https://doi.org/10.1038/nm.3893
52. Jang J, Park S, Jin Hur H, Cho HJ, Hwang I, Pyo Kang Y, Im I, Lee H, Lee E, Yang W, Kang HC, Won Kwon S, Yu JW, Kim DW. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat Commun 2016; 7:13129. DOI: https://doi.org/10.1038/ncomms13129
53. Lee E, Hwang I, Park S, Hong S, Hwang B, Cho Y, Son J, Yu JW. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 2019; 26(2):213-228. DOI: https://doi.org/10.1038/s41418-018-0124-5
54. Jewell S, Herath AM, Gordon R. Inflammasome activation in Parkinson’s disease. J Parkinsons Dis 2022; 12(s1):S113-S128. DOI: https://doi.org/10.3233/JPD-223338
55. Su Q, Ng WL, Goh SY, Gulam MY, Wang LF, Tan EK, Ahn M, Chao YX. Targeting the inflammasome in Parkinson’s disease. Front Aging Neurosci 2022; 14:957705. DOI: https://doi.org/10.3389/fnagi.2022.957705
56. Liang T, Zhang Y, Wu S, Chen Q, Wang L. The role of NLRP3 inflammasome in Alzheimer’s disease and potential therapeutic targets. Front Pharmacol 2022; 13:845185. DOI: https://doi.org/10.3389/fphar.2022.845185
57. Holbrook JA, Jarosz-Griffiths HH, Caseley E, Lara-Reyna S, Poulter JA, Williams-Gray CH, Peckham D, McDermott MF. Neurodegenerative disease and the NLRP3 inflammasome. Front Pharmacol 2021; 12:643254. DOI: https://doi.org/10.3389/fphar.2021.643254
58. Rui W, Li S, Xiao H, Xiao M, Shi J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson’s disease. Int J Neuropsychopharmacol 2020; 23(11):762-773. DOI: https://doi.org/10.1093/ijnp/pyaa060
59. Liu Z, Shen C, Li H, Tong J, Wu Y, Ma Y, Wang J, Wang Z, Li Q, Zhang X, Dong H, Yang Y, Yu M, Wang J, Zhou R, Fei J, Huang F. NOD-like receptor NLRC5 promotes neuroinflammation and inhibits neuronal survival in Parkinson’s disease models. J Neuroinflammation 2023; 20(1):96. DOI: https://doi.org/10.1186/s12974-023-02755-4
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.