##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 31, 2023

Anubha Pathak  

Sameer Saxena

Abstract

Tree-mining is an essential system of techniques and software technologies for multi-level and multi-angled operations in databases. Pertaining to the purview of this manuscript, several applications of various sub-techniques of tree mining have been explored. The current write-up is aimed at investigating the major applications and challenges of different types and techniques of tree mining, as there have been patchy and scanty investigations so far in this context. To accomplish these tasks, the author has reviewed some of the latest and most pertinent research articles of the last two decades to investigate the titled aspects of this technique.

##plugins.themes.bootstrap3.article.details##

Keywords

Tree Mining, Tree Nodes, Decision Trees, BST, BT, AVL, Mining Techniques and Algorithms, Tree Challenges

References
1. Nijssen S. Tree Mining. Encyclopedia of Machine Learning. Sammut C, Webb GI (Eds), ISBN: 978-0-387-30164-8, Springer, 2011; pp.991-999.

2. Jiménez A, Berzal F, Cubero JC. Using trees to mine multirelational databases. Data Min Knowl Disc 2012; 24:1-39. DOI: https://doi.org/10.1007/s10618-011-0218-x

3. Types of binary tree. Last accessible date: August 26, 2021. Available at: http://www.datascience.com

4. R.G. Dromey. How to Solve It by Computer. Pearson Education India. ISBN: 9788131705629, 2008; pp 342-348.

5. Munjal G, Hanmandlu M, Srivastva S, Gaur D. Assessing and mining of phylogenetic trees. Int J Datab Theory Appl 2017; 2017:67-78. DOI: https://doi.org/10.14257/ijdta.2017.10.1.07

6. Jiménez A, Berzal F, Cubero JC. Mining Different Kinds of Trees. A Tree Mining Overview. 2007; Available at: https://www.researchgate.net/publication/252222149

7. Anonimous. Phylogenetic analysis using Machine learning 2021; Available at: http://www.tutorsindia.com

8. Padhy N, Panigrah R. Multi Relational Data Mining Approaches: A Data Mining Technique. Int J Comput Appl 2012; DOI: https://doi.org/10.5120/9207-3742

9. Atramentov A, Leiva H, Honavar V. A Multi-relational Decision Tree Learning Algorithm - Implementation and Experiments. Inductive Logic Programming. Horváth, T., Yamamoto, A. (Eds) ISBN: 978-3-540-20144-1, ILP, 2003; pp. 38-56.

10. Dzeroski S, Blocked H. Multi-relational data mining. Workshop report. SIGKDD Explor. 2005; 7:126-128. DOI: https://doi.org/10.1145/1117454.1117471

11. Bithi A A, Ferdaus A A. Sequential pattern tree mining. J Comput Eng 2013; 2013:79-89. DOI: 10.9790/0661-1557978

12. Patel M V, Ujainiya J D, Sanghani N M. A survey on sequential pattern mining algorithms. Int J Adv Res Innov Idea Educ 2020; 6(5).

13. Lin C, Hong T, Lu W, Lin W. An incremental FUSP-tree maintenance algorithm. ISDA, J.-S. Pan, A. Abraham, and C.-C. Chang. (Eds). IEEE Comput Society 2008; pp.445-449. DOI : https://doi.org/10.1109/ISDA.2008.126

14. Bithi A A, Akhter M, Ferdaus A A. Tree based sequential pattern mining. Int J Comput Sci Inf Technol Secur 2012; 2:6.

15. Lin C, Gan W, Hong T, Tso R. An incremental algorithm for maintaining the built FUSP tree based on the pre-large concept. Adv Intellig Syst Comput 2014; 297:135-144. DOI: https://doi.org/10.1007/978-3-319-07776-5_15

16. Lin C, Hong T, Chen Yi, Lin T, Pan S 920130. An Integrated MFFP-tree Algorithm for Mining Global Fuzzy Rules from Distributed Databases. J Univer Comput Sci 2013; 521-538. DOI: https://doi.org/10.3217/jucs-019-04-0521

17. Seidl T. Frequent Itemset Mining. Knowledge Discovery in Databases. Available at: https://www.dbs.ifi.lmu.de/Lehre/KDD/SS16/uebung/blatt03_sol.pdf

18. Stergios P, Mavroudi S. The fuzzy frequent pattern tree, The WSEAS Int Conf Comput 2005; 1-7. DOI: https://doi.org/10.5555/1369599.1369602

19. Shruti M, Debahuti M, Kumar S. Fuzzy pattern tree approach for mining frequent patterns from gene expression data. Int Conf Electron Comput Technol 2011; 359-363. DOI: https://doi.org/10.1109/ICECTECH.2011.5941718

20. Lin C W, Hong T P, Lu W H. Linguistic data mining with fuzzy FP-trees. Expert Syst Appl 2010; 37(6):4560-4567. DOI: https://doi.org/10.1016/j.eswa.2009.12.052

21. Lin C W, Hong T P, Lu W H. An efficient tree-based fuzzy data mining approach. Int J Fuzzy Syst 2010; 12(2):150-157. DOI: https://doi.org/10.30000/IJFS.201006.0006

22. Knijf J D . FAT-miner: mining frequent attribute trees. Proceedings of the 2007 ACM symposium on Applied computing.2007: pp.417-422. DOI: https://doi.org/10.1145/1244002.1244099

23. Knijf J D. FAT- miner: Mining Frequent Attribute Trees. Utrecht University Repository (Book). ISSN: 0924-3275, 2006; pp.2-20.

24. Cormen T H, Leiserson C E, Rivest R, Stein C. Introduction to Algorithms. MIT Press. ISBN- 978-0-262-04630-5, 2009.

25. Qian L, Liu J. Application of data mining technology and wireless network sensing technology in sports training index analysis. J Wirel Comm Network 2020; 2020:121.DOI: https://doi.org/10.1186/s13638-020-01735-z

26. Horyath T, Bringmann B, Raedt L D. Frequent Hypergraph Mining. Computer Science. ISBN: 978-3-540-73846-6. 2006; pp.244-259.

27. Neville J, Jensen D, Friedland L, Hay M. Learning relational probability trees. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2003; pp.625-630 DOI: https://doi.org/10.1145/956750.956830

28. McGovern A, Hiers N, Collier M, Gagne II DJ, Brown RA. Spatiotemporal relational probability trees. In: Proceedings of the IEEE International Conference on Data Mining 2008; pp.935-940. DOI: https://doi.org/10.1109/ICDM.2008.134

29. McGovern A, Supinie T, Gagne D J II, Troutman N, Collier M, Brown R A, Basara J, Williams J. Understanding severe weather processes through spatiotemporal relational random forests. In: Proceedings of the NASA Conference on Intelligent Data Understanding, 2010; pp.213-227.

30. McGovern A, Gagne DJII, Troutman N, Brown RA, Basara J, Williams J. Using spatiotemporal relational random forests to improve our understanding of severe weather processes. Stat Anal Data Min 4(4):407-429. 2011; DOI: https://doi.org/10.1002/sam.10128.

31. McGovern A, Rosendahl DH, Brown RA, Droegemeier KK. Identifying predictive multi-dimensional time series motifs: An application to understanding severe weather. Data Min Knowl Discov 22(1):232-258.2011; DOI: https://doi.org/10.1007/s10618-010-0193-7
How to Cite
Pathak, A., & Saxena, S. (2023). Tree-Mining: Understanding Applications and Challenges. Science Insights, 43(1), 985–993. https://doi.org/10.15354/si.23.re605
Section
Review