Published Dec 30, 2019

Fuzhou Wang  


Sleep occupies about one third of a person’s life. It is a critical physiological process. It is essential for the formation and consolidation of memory. Deficiency, lack of sleep will obviously affect the body’s cognitive function. With the devel-opment of society and changes in lifestyle, more and more of people suffer from lack of sleep. We herein review the research history of the relationship between sleep and memory and discuss the most relevant fields and corresponding research progress, introduce various mechanisms of sleep to consolidate memory, and clarify the effects of sleep problems on memory. So as to help people better weigh the pros and cons of sleep, improve the quality of life, and respond to growing competition struggling for pressure and aging.



Sleep, Memory Consolidation, Dementia, Stress, Insomnia

1. Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016; 538(7623):51-59.

2. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci 2010; 11(2):114-126.

3. Peever J, Fuller PM. The biology of REM sleep. Curr Biol 2017; 27(22):R1237-R1248.

4. Gent TC, Bassetti C, Adamantidis AR. Sleep-wake control and the thalamus. Curr Opin Neurobiol 2018 52:188-197.

5. Hu Z, Ren S. The Role of thalamus in arousal control. J Third Mil Med Univ 2018; 40(23):2119-2121.

6. Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D, Xia J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, Hu Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 2018; 362(6413):429-434.

7. Hua R, Wang X, Chen X, Wang X, Huang P, Li P, Mei W, Li H. Calretinin neurons in the midline thalamus modulate starvation-induced arousal. Curr Biol 2018; 28(24):3948-3959.

8. Mátyás F, Komlósi G, Babiczky Á, Kocsis K, Barthó P, Barsy B, Dávid C, Kanti V, Porrero C, Magyar A, Szucs I, Clasca F, Acsády L. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat Neurosci 2018; 21(11):1551-1562.

9. Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR. Thalamic dual control of sleep and wakefulness. Nat Neurosci 2018; 21(7):974-984.

10. Honjoh S, Sasai S, Schiereck SS, Nagai H, Tononi G, Cirelli C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 2018; 9(1):2100.

11. Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, Luo YJ, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Urade Y, Qu WM, Huang ZL, Lazarus M. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 2017; 8(1):734.

12. Luo Yj, Li Yd, Wang L, Yang SR, Yuan XS, Wang J, Cherasse Y, Lazarus M, Chen JF, Qu WM, Huang ZL. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun 2018; 9(1):1576.

13. Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019; 22(1):106-119.

14. Guo F, Holla M, Díaz MM, Rosbash M. A circadian output circuit controls sleep-wake arousal in drosophila. Neuron 2018; 100(3):624-635.

15. Yadlapalli S, Jiang C, Bahle A, Reddy P, Meyhofer E, Shafer OT. Circadian clock neurons constantly monitor environmental temperature to set sleep timing. Nature 2018; 555(7694):98-102.

16. Latorre D, Kallweit U, Armentani E, Foglierini M, Mele F, Cassotta A, Jovic S, Jarrossay D, Mathis J, Zellini F, Becher B, Lanzavecchia A, Khatami R, Manconi M, Tafti M, Bassetti CL, Sallusto F. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 2018; 562(7725):63-68.

17. Norimoto H, Makino K, Gao M, Shikano Y, Okamoto K, Ishikawa T, Sasaki T, Hioki H, Fujisawa S, Ikegaya Y. Hippocampal ripples down-regulate synapses. Science 2018; 359(6383):1524-1527.

18. Wang Z, Ma J, Miyoshi C, Li Y, Sato M, Ogawa Y, Lou T, Ma C, Gao X, Lee C, Fujiyama T, Yang X, Zhou S, Hotta-Hirashima N, Klewe-Nebenius D, Ikkyu A, Kakizaki M, Kanno S, Cao L, Takahashi S, Peng J, Yu Y, Funato H, Yanagisawa M, Liu Q. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 2018; 558(7710):435-439.

19. Drieu C, Todorova R, Zugaro M. Nested sequences of hippocampal assemblies during behavior support subsequent sleep replay. Science 2018; 362(6415):675-679.

20. Sawangjit A, Oyanedel Cn, Niethard N, Salazar C, Born J, Inostroza M. The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature 2018; 564(7734):109-113.

21. Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J, Regev A, Dulac C, Zhuang X. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 2018; 362(6416):Eaau5324.

22. Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun A, Sun Y, Weissbourd B, Neve RL, Huguenard J, Horowitz MA, Luo L. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 2018; 175(2):472-487.

23. Totah Nk, Neves Rm, Panzeri S, Logothetis NK, Eschenko O. The Locus Coeruleus is a complex and differentiated neuromodulatory system. Neuron 2018; 99(5):1055-1068.
How to Cite
Wang, F. (2019). Sleep and Memory Consolidation. Science Insights, 31(3), 107–115. https://doi.org/10.15354/si.19.re127