##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Aug 31, 2023

Nhu Kaur

Terry Lee Ng  

Abstract

Alzheimer’s disease (AD) is an advancing neurodegenerative condition distinguished by a gradual deterioration of cognitive functions, including memory impairment and diminished functional capabilities. The issue presents a substantial global public health concern, as there is a growing prevalence of affected persons annually. In the pursuit of innovative strategies to delay or mitigate the beginning of AD, scholars have turned their attention to the exploration of physical activity as a potentially fruitful area of study. This review aims to investigate the correlation between engagement in sports activities and the development of AD. It will analyze the potential advantages of physical exercise on cognitive well-being and discuss the significance of these findings for strategies related to the prevention and treatment of the disease. We integrate data derived from epidemiological investigations, clinical trials, and neuroscientific inquiries, thereby emphasizing the existing body of knowledge in this pivotal domain.

##plugins.themes.bootstrap3.article.details##

Keywords

Alzheimer’s Disease, Sports; Beta-Amyloid Protein, Inflammatory Response, Prevention

References
1. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020; 25(24):5789. DOI: https://doi.org/10.3390/molecules25245789

2. Kumar A, Sidhu J, Goyal A, et al. Alzheimer Disease. [Updated 2022 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK499922/

3. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement 2023; 19(4):1598-1695. DOI: https://doi.org/10.1002/alz.13016

4. Du Z, Li Y, Li J, Zhou C, Li F, Yang X. Physical activity can improve cognition in patients with Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Clin Interv Aging 2018; 13:1593-1603. DOI: https://doi.org/10.2147/CIA.S169565

5. Nuzum H, Stickel A, Corona M, Zeller M, Melrose RJ, Wilkins SS. Potential benefits of physical activity in MCI and dementia. Behav Neurol 2020; 2020:7807856. DOI: https://doi.org/10.1155/2020/7807856

6. Geda YE, Roberts RO, Knopman DS, Christianson TJ, Pankratz VS, Ivnik RJ, Boeve BF, Tangalos EG, Petersen RC, Rocca WA. Physical exercise, aging, and mild cognitive impairment: A population-based study. Arch Neurol 2010; 67(1):80-86. DOI: https://doi.org/10.1001/archneurol.2009.297

7. Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res 2013; 2013:657508. DOI: https://doi.org/10.1155/2013/657508

8. Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical activity and brain health. Genes (Basel) 2019; 10(9):720. DOI: https://doi.org/10.3390/genes10090720

9. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022; 7(2):e105-e125. DOI: https://doi.org/10.1016/S2468-2667(21)00249-8

10. Tsao CW, Vasan RS. The framingham heart study: Past, present and future. Int J Epidemiol. 2015 Dec;44(6):1763-1766. DOI: https://doi.org/10.1093/ije/dyv336

11. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, Kuller LH, Manolio TA, Mittelmark MB, Newman A, et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol 1991; 1(3):263-276. DOI: https://doi.org/10.1016/1047-2797(91)90005-w

12. Aggarwal NT, Everson-Rose SA, Evans DA. Social determinants, race, and brain health outcomes: Findings from the Chicago Health and Aging Project. Curr Alzheimer Res 2015; 12(7):622-631. DOI: https://doi.org/10.2174/1567205012666150701102606

13. Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol Med 2009; 39(1):3-11. DOI: https://doi.org/10.1017/S0033291708003681

14. Guure CB, Ibrahim NA, Adam MB, Said SM. Impact of physical activity on cognitive decline, dementia, and its subtypes: Meta-analysis of prospective studies. Biomed Res Int 2017; 2017:9016924. DOI: https://doi.org/10.1155/2017/9016924

15. Meng Q, Lin MS, Tzeng IS. Relationship between exercise and Alzheimer’s disease: A narrative literature review. Front Neurosci 2020; 14:131. DOI: https://doi.org/10.3389/fnins.2020.00131

16. Hernández-Mendo A, Reigal RE, López-Walle JM, Serpa S, Samdal O, Morales-Sánchez V, Juárez-Ruiz de Mier R, Tristán-Rodríguez JL, Rosado AF, Falco C. Physical activity, sports practice, and cognitive functioning: The current research status. Front Psychol 2019; 10:2658. DOI: https://doi.org/10.3389/fpsyg.2019.02658

17. Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G. Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. Front Psychol 2018; 9:509. DOI: https://doi.org/10.3389/fpsyg.2018.00509

18. Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The neuroprotective effects of exercise: Maintaining a healthy brain throughout aging. Brain Plast 2018; 4(1):17-52. DOI: https://doi.org/10.3233/BPL-180069

19. Hughes TF, Ganguli M. Modifiable midlife risk factors for late-life cognitive impairment and dementia. Curr Psychiatry Rev 2009; 5(2):73-92. DOI: https://doi.org/10.2174/157340009788167347

20. James BD, Wilson RS, Barnes LL, Bennett DA. Late-life social activity and cognitive decline in old age. J Int Neuropsychol Soc 2011; 17(6):998-1005. DOI: https://doi.org/10.1017/S1355617711000531

21. Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol 2013; 3(1):403-428. DOI: https://doi.org/10.1002/cphy.c110063

22. Ruthirakuhan M, Luedke AC, Tam A, Goel A, Kurji A, Garcia A. Use of physical and intellectual activities and socialization in the management of cognitive decline of aging and in dementia: A review. J Aging Res 2012; 2012:384875. DOI: https://doi.org/10.1155/2012/384875

23. Delp MD, Armstrong RB, Godfrey DA, Laughlin MH, Ross CD, Wilkerson MK. Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. J Physiol. 2001; 533(Pt 3):849-859. DOI: https://doi.org/10.1111/j.1469-7793.2001.t01-1-00849.x

24. Renke MB, Marcinkowska AB, Kujach S, Winklewski PJ. A systematic review of the impact of physical exercise-induced increased resting cerebral blood flow on cognitive functions. Front Aging Neurosci 2022; 14:803332. DOI: https://doi.org/10.3389/fnagi.2022.803332

25. López-Ortiz S, Pinto-Fraga J, Valenzuela PL, Martín-Hernández J, Seisdedos MM, García-López O, Toschi N, Di Giuliano F, Garaci F, Mercuri NB, Nisticò R, Emanuele E, Lista S, Lucia A, Santos-Lozano A. Physical exercise and Alzheimer’s disease: Effects on pathophysiological molecular pathways of the disease. Int J Mol Sci 2021; 22(6):2897. DOI: https://doi.org/10.3390/ijms22062897

26. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017:8416763. DOI: https://doi.org/10.1155/2017/8416763

27. Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 2017; 57(4):1105-1121. DOI: https://doi.org/10.3233/JAD-161088

28. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019; 24(8):1583. DOI: https://doi.org/10.3390/molecules24081583

29. Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015; 31(7-8):916-922. DOI: https://doi.org/10.1016/j.nut.2015.02.005

30. Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, Neri LM. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018; 9(24):17181-17198. DOI: https://doi.org/10.18632/oncotarget.24729

31. Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. J Sport Health Sci 2019; 8(3):201-217. DOI: https://doi.org/10.1016/j.jshs.2018.09.009

32. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, Ulja D, Karuppagounder SS, Holson EB, Ratan RR, Ninan I, Chao MV. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife 2016; 5:e15092. DOI: https://doi.org/10.7554/eLife.15092

33. Zhou B, Wang Z, Zhu L, Huang G, Li B, Chen C, Huang J, Ma F, Liu TC. Effects of different physical activities on brain-derived neurotrophic factor: A systematic review and bayesian network meta-analysis. Front Aging Neurosci 2022; 14:981002. DOI: https://doi.org/10.3389/fnagi.2022.981002

34. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 2019; 13:363. DOI: https://doi.org/10.3389/fncel.2019.00363

35. Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci 2018; 12:52. DOI: https://doi.org/10.3389/fnins.2018.00052

36. Linz R, Puhlmann LMC, Apostolakou F, Mantzou E, Papassotiriou I, Chrousos GP, Engert V, Singer T. Acute psychosocial stress increases serum BDNF levels: An antagonistic relation to cortisol but no group differences after mental training. Neuropsychopharmacology 2019; 44(10):1797-1804. DOI: https://doi.org/10.1038/s41386-019-0391-y

37. Walsh EI, Smith L, Northey J, Rattray B, Cherbuin N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res Rev 2020; 60:101044. DOI: https://doi.org/10.1016/j.arr.2020.101044

38. Dalton A, Mermier C, Zuhl M. Exercise influence on the microbiome-gut-brain axis. Gut Microbes 2019; 10(5):555-568. DOI: https://doi.org/10.1080/19490976.2018.1562268

39. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11):1823-1836. DOI: https://doi.org/10.1042/BCJ20160510

40. Cella V, Bimonte VM, Sabato C, Paoli A, Baldari C, Campanella M, Lenzi A, Ferretti E, Migliaccio S. Nutrition and physical activity-induced changes in gut microbiota: Possible implications for human health and athletic performance. Foods 2021; 10(12):3075. DOI: https://doi.org/10.3390/foods10123075

41. Cataldi S, Poli L, Şahin FN, Patti A, Santacroce L, Bianco A, Greco G, Ghinassi B, Di Baldassarre A, Fischetti F. The effects of physical activity on the gut microbiota and the gut-brain axis in preclinical and human models: A narrative review. Nutrients 2022; 14(16):3293. DOI: https://doi.org/10.3390/nu14163293

42. Fairhall N, Aggar C, Kurrle SE, Sherrington C, Lord S, Lockwood K, Monaghan N, Cameron ID. Frailty Intervention Trial (FIT). BMC Geriatr 2008; 8:27. DOI: https://doi.org/10.1186/1471-2318-8-27

43. Rashid T, Li K, Toledo JB, Nasrallah I, Pajewski NM, Dolui S, Detre J, Wolk DA, Liu H, Heckbert SR, Bryan RN, Williamson J, Davatzikos C, Seshadri S, Launer LJ, Habes M. Association of intensive vs standard blood pressure control with regional changes in cerebral small vessel disease biomarkers: Post hoc secondary analysis of the SPRINT MIND randomized clinical trial. JAMA Netw Open 2023; 6(3):e231055. DOI: https://doi.org/10.1001/jamanetworkopen.2023.1055

44. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 2011; 108(7):3017-3022. DOI: https://doi.org/10.1073/pnas.1015950108

45. Diamond A, Ling DS. Aerobic-Exercise and resistance-training interventions have been among the least effective ways to improve executive functions of any method tried thus far. Dev Cogn Neurosci 2019; 37:100572. DOI: https://doi.org/10.1016/j.dcn.2018.05.001

46. Dhami P, Moreno S, DeSouza JF. New framework for rehabilitation - fusion of cognitive and physical rehabilitation: The hope for dancing. Front Psychol 2015; 5:1478. DOI: https://doi.org/10.3389/fpsyg.2014.01478

47. Leritz EC, McGlinchey RE, Kellison I, Rudolph JL, Milberg WP. Cardiovascular disease risk factors and cognition in the elderly. Curr Cardiovasc Risk Rep 2011; 5(5):407-412. DOI: https://doi.org/10.1007/s12170-011-0189-x

48. Feinkohl I, Lachmann G, Brockhaus WR, Borchers F, Piper SK, Ottens TH, Nathoe HM, Sauer AM, Dieleman JM, Radtke FM, van Dijk D, Pischon T, Spies C. Association of obesity, diabetes and hypertension with cognitive impairment in older age. Clin Epidemiol 2018; 10:853-862. DOI: https://doi.org/10.2147/CLEP.S164793

49. Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med 2018; 5:135. DOI: https://doi.org/10.3389/fcvm.2018.00135

50. Myers J, Kokkinos P, Nyelin E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients 2019; 11(7):1652. DOI: https://doi.org/10.3390/nu11071652

51. Barnes JN, Corkery AT. Exercise improves vascular function, but does this translate to the brain? Brain Plast 2018; 4(1):65-79. DOI: https://doi.org/10.3233/BPL-180075

52. Barnes JN, Pearson AG, Corkery AT, Eisenmann NA, Miller KB. Exercise, arterial stiffness, and cerebral vascular function: Potential impact on brain health. J Int Neuropsychol Soc 2021; 27(8):761-775. DOI: https://doi.org/10.1017/S1355617721000394

53. Ezkurdia A, Ramírez MJ, Solas M. Metabolic syndrome as a risk factor for alzheimer’s disease: A focus on insulin resistance. Int J Mol Sci 2023; 24(5):4354. DOI: https://doi.org/10.3390/ijms24054354

54. Cannata F, Vadalà G, Russo F, Papalia R, Napoli N, Pozzilli P. Beneficial effects of physical activity in diabetic patients. J Funct Morphol Kinesiol 2020; 5(3):70. DOI: https://doi.org/10.3390/jfmk5030070

55. Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, Kirwan JP, Zierath JR. Exercise/physical activity in individuals with type 2 diabetes: a consensus statement from the American college of sports medicine. Med Sci Sports Exerc 2022;

54(2):353-368. DOI: https://doi.org/10.1249/MSS.0000000000002800

56. Pinckard K, Baskin KK, Stanford KI. Effects of exercise to improve cardiovascular health. Front Cardiovasc Med 2019; 6:69. DOI: https://doi.org/10.3389/fcvm.2019.00069

57. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4:575-590. DOI: https://doi.org/10.1016/j.trci.2018.06.014

58. Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets 2010; 9(2):156-167. DOI: https://doi.org/10.2174/187152710791012071

59. Scheffer DDL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10):165823. DOI: https://doi.org/10.1016/j.bbadis.2020.165823

60. Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta 2010; 411(11-12):785-793. DOI: https://doi.org/10.1016/j.cca.2010.02.069

61. Kelly ÁM. Exercise-induced modulation of neuroinflammation in models of Alzheimer’s disease. Brain Plast 2018; 4(1):81-94. DOI: https://doi.org/10.3233/BPL-180074

62. Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease. J Neuroinflammation 2023; 20(1):76. DOI: https://doi.org/10.1186/s12974-023-02753-6

63. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1):65-74. DOI: https://doi.org/10.2174/157015909787602823

64. Jackson PA, Pialoux V, Corbett D, Drogos L, Erickson KI, Eskes GA, Poulin MJ. Promoting brain health through exercise and diet in older adults: A physiological perspective. J Physiol 2016; 594(16):4485-4498. DOI: https://doi.org/10.1113/JP271270

65. Peavy GM, Jacobson MW, Salmon DP, Gamst AC, Patterson TL, Goldman S, Mills PJ, Khandrika S, Galasko D. The influence of chronic stress on dementia-related diagnostic change in older adults. Alzheimer Dis Assoc Disord 2012; 26(3):260-266. DOI: https://doi.org/10.1097/WAD.0b013e3182389a9c

66. Byers AL, Yaffe K. Depression and risk of developing dementia. Nat Rev Neurol 2011; 7(6):323-331. DOI: https://doi.org/10.1038/nrneurol.2011.60

67. Fossati C, Torre G, Vasta S, Giombini A, Quaranta F, Papalia R, Pigozzi F. Physical exercise and mental health: The routes of a reciprocal relation. Int J Environ Res Public Health 2021; 18(23):12364. DOI: https://doi.org/10.3390/ijerph182312364

68. Eather N, Wade L, Pankowiak A, Eime R. The impact of sports participation on mental health and social outcomes in adults: A systematic review and the ‘Mental Health through Sport’ conceptual model. Syst Rev 2023; 12(1):102. DOI: https://doi.org/10.1186/s13643-023-02264-8

69. Yu DJ, Yu AP, Bernal JDK, Fong DY, Chan DKC, Cheng CP, Siu PM. Effects of exercise intensity and frequency on improving cognitive performance in middle-aged and older adults with mild cognitive impairment: A pilot randomized controlled trial on the minimum physical activity recommendation from WHO. Front Physiol 2022; 13:1021428. DOI: https://doi.org/10.3389/fphys.2022.1021428

70. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396(10248):413-446. DOI: https://doi.org/10.1016/S0140-6736(20)30367-6

71. Kankaanpää A, Tolvanen A, Heikkinen A, Kaprio J, Ollikainen M, Sillanpää E. The role of adolescent lifestyle habits in biological aging: A prospective twin study. Elife 2022; 11:e80729. DOI: https://doi.org/10.7554/eLife.80729

72. Iqbal K, Grundke-Iqbal I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 2010; 6(5):420-424. DOI: https://doi.org/10.1016/j.jalz.2010.04.006

73. Fukuoka Y, Gay C, Haskell W, Arai S, Vittinghoff E. Identifying factors associated with dropout during prerandomization run-in period from an mhealth physical activity education study: The mPED trial. JMIR Mhealth Uhealth 2015; 3(2):e34. DOI: https://doi.org/10.2196/mhealth.3928

74. Sharma A, Madaan V, Petty FD. Exercise for mental health. Prim Care Companion J Clin Psychiatry 2006; 8(2):106. DOI: https://doi.org/10.4088/pcc.v08n0208a

75. Westcott WL. Resistance training is medicine: Effects of strength training on health. Curr Sports Med Rep 2012; 11(4):209-216. DOI: https://doi.org/10.1249/JSR.0b013e31825dabb8

76. Zhang T, Liu W, Gao S. Effects of mind-body exercises on cognitive impairment in people with Parkinson’s disease: A mini-review. Front Neurol 2022; 13:931460. DOI: https://doi.org/10.3389/fneur.2022.931460

77. Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: Informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act 2013; 10:98. DOI: https://doi.org/10.1186/1479-5868-10-98

78. Gallaway PJ, Miyake H, Buchowski MS, Shimada M, Yoshitake Y, Kim AS, Hongu N. Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sci 2017; 7(2):22. DOI: https://doi.org/10.3390/brainsci7020022

79. Montero-Odasso M, Zou G, Speechley M, Almeida QJ, Liu-Ambrose T, Middleton LE, Camicioli R, Bray NW, Li KZH, Fraser S, Pieruccini-Faria F, Berryman N, Lussier M, Shoemaker JK, Son S, Bherer L; Canadian Gait and Cognition Network. Effects of exercise alone or combined with cognitive training and vitamin d supplementation to improve cognition in adults with mild cognitive impairment: A randomized clinical trial. JAMA Netw Open 2023; 6(7):e2324465. DOI: https://doi.org/10.1001/jamanetworkopen.2023.24465
How to Cite
Kaur, N., & Ng, T. L. (2023). Sports and Alzheimer’s Disease: The Role of Physical Activity in Cognition Health. Science Insights, 43(2), 1009–1018. https://doi.org/10.15354/si.23.re650
Section
Review