A Perspective Review of Cancer Therapy (Part II): Adoptive Cell Transfer, Metabolic Therapy, and Artificial Intelligence
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In recent years, there has been significant advancement in cancer therapy, with the emergence of novel and inventive methods that provide hope to patients. An advanced approach is adoptive cell transfer, which utilizes the immune system’s potential by modifying T cells to identify and eliminate cancer cells. The implementation of this individualized method has demonstrated encouraging effects across different cancer types, resulting in enhanced prognoses for numerous individuals. Metabolic therapy has emerged as a possible treatment technique, alongside adoptive cell transfer. This therapeutic method seeks to interrupt the growth and survival of cancer cells by specifically targeting their abnormal metabolism. Moreover, artificial intelligence (AI) is transforming cancer care by assisting in the identification of diseases, forecasting the likely course of illness, and devising treatment strategies. Artificial intelligence algorithms employ extensive data analysis to identify patterns and anomalies that may not be readily apparent to human specialists in isolation. Oncologists can enhance patient outcomes and reduce unwanted effects by integrating adoptive cell transfer, metabolic therapy, and AI technologies to provide personalized treatments.
##plugins.themes.bootstrap3.article.details##
Cancer, Adoptive Cell Transfer, Metabolic Therapy, Artificial Intelligence, Outcomes
2. Nassar SF, Raddassi K, Ubhi B, Doktorski J, Abulaban A. Precision medicine: Steps along the road to combat human cancer. Cells 2020; 9(9):2056. DOI: https://doi.org/10.3390/cells9092056
3. Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo) 2017; 15(3):369-375. DOI: https://doi.org/10.1590/S1679-45082017RB4024
4. Strianese O, Rizzo F, Ciccarelli M, Galasso G, D'Agostino Y, Salvati A, Del Giudice C, Tesorio P, Rusciano MR. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes (Basel) 2020; 11(7):747. DOI: https://doi.org/10.3390/genes11070747
5. Baranwal J, Barse B, Di Petrillo A, Gatto G, Pilia L, Kumar A. Nanoparticles in cancer diagnosis and treatment. Materials (Basel) 2023; 16(15):5354. DOI: https://doi.org/10.3390/ma16155354
6. Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22(1):169. DOI: https://doi.org/10.1186/s12943-023-01865-0
7. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, Ladwa R, O'Byrne K, Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr Oncol 2022; 29(5):3044-3060. DOI: https://doi.org/10.3390/curroncol29050247
8. Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD-1 pathway in the immune response. Am J Transplant 2012; 12(10):2575-2587. DOI: https://doi.org/10.1111/j.1600-6143.2012.04224.x
9. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8:561. DOI: https://doi.org/10.3389/fphar.2017.00561
10. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016; 39(1):98-106. DOI: https://doi.org/10.1097/COC.0000000000000239
11. Okobi TJ, Uhomoibhi TO, Akahara DE, Odoma VA, Sanusi IA, Okobi OE, Umana I, Okobi E, Okonkwo CC, Harry NM. Immune checkpoint inhibitors as a treatment option for bladder cancer: Current evidence. Cureus 2023; 15(6):e40031. DOI: https://doi.org/10.7759/cureus.40031
12. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS, Gardner JM, Ginex P, Hallmeyer S, Holter Chakrabarty J, Leighl NB, Mammen JS, McDermott DF, Naing A, Nastoupil LJ, Phillips T, Porter LD, Puzanov I, Reichner CA, Santomasso BD, Seigel C, Spira A, Suarez-Almazor ME, Wang Y, Weber JS, Wolchok JD, Thompson JA; National comprehensive cancer network. management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 2018; 36(17):1714-1768. DOI: https://doi.org/10.1200/JCO.2017.77.6385
13. Basudan AM. The role of immune checkpoint inhibitors in cancer therapy. Clin Pract 2022; 13(1):22-40. DOI: https://doi.org/10.3390/clinpract13010003
14. Hernández-López A, Téllez-González MA, Mondragón-Terán P, Meneses-Acosta A. Chimeric antigen receptor-t cells: A pharmaceutical scope. Front Pharmacol 2021; 12:720692. DOI: https://doi.org/10.3389/fphar.2021.720692
15. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257(1):107-126. DOI: https://doi.org/10.1111/imr.12131
16. Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: What we know so far. Nat Rev Clin Oncol 2023; 20(6):359-371. DOI: https://doi.org/10.1038/s41571-023-00754-1
17. Messmer AS, Que YA, Schankin C, Banz Y, Bacher U, Novak U, Pabst T. CAR T-cell therapy and critical care: A survival guide for medical emergency teams. Wien Klin Wochenschr 2021; 133(23-24):1318-1325. DOI: https://doi.org/10.1007/s00508-021-01948-2
18. Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T Cell therapy. Mol Ther Methods Clin Dev 2016; 4:92-101. DOI: https://doi.org/10.1016/j.omtm.2016.12.006
19. Fesnak AD. The challenge of variability in chimeric antigen receptor T cell manufacturing. Regen Eng Transl Med 2020; 6(3):322-329. DOI: https://doi.org/10.1007/s40883-019-00124-3
20. Liu Z, Zhou Z, Dang Q, Xu H, Lv J, Li H, Han X. Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics 2022; 12(14):6273-6290. DOI: https://doi.org/10.7150/thno.76854
21. Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res 2017; 5:22. DOI: https://doi.org/10.1186/s40364-017-0102-y
22. Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. Harnessing the immune system against cancer: Current immunotherapy approaches and therapeutic targets. Mol Biol Rep 2021; 48(12):8075-8095. DOI: https://doi.org/10.1007/s11033-021-06752-9
23. Liu D, Che X, Wang X, Ma C, Wu G. tumor vaccines: Unleashing the power of the immune system to fight cancer. Pharmaceuticals (Basel) 2023; 16(10):1384. DOI: https://doi.org/10.3390/ph16101384
24. Enokida T, Moreira A, Bhardwaj N. Vaccines for immunoprevention of cancer. J Clin Invest 2021; 131(9):e146956. DOI: https://doi.org/10.1172/JCI146956
25. Le I, Dhandayuthapani S, Chacon J, Eiring AM, Gadad SS. Harnessing the immune system with cancer vaccines: From prevention to therapeutics. Vaccines (Basel) 2022; 10(5):816. DOI: https://doi.org/10.3390/vaccines10050816
26. Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17(11):3520-3526. DOI: https://doi.org/10.1158/1078-0432.CCR-10-3126
27. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363(5):411-422. DOI: https://doi.org/10.1056/NEJMoa1001294
28. Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: Advancements, challenges, and prospects. Signal Transduct Target Ther 2023; 8(1):450. DOI: https://doi.org/10.1038/s41392-023-01674-3
29. Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol 2022; 15(1):28. DOI: https://doi.org/10.1186/s13045-022-01247-x
30. Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 2018; 15(6):353-365. DOI: https://doi.org/10.1038/s41571-018-0002-6
31. Wang M, Yu L, Wei X, Wei Y. Role of tumor gene mutations in treatment response to immune checkpoint blockades. Precis Clin Med 2019; 2(2):100-109. DOI: https://doi.org/10.1093/pcmedi/pbz006
32. Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 2021; 39(2):154-173. DOI: https://doi.org/10.1016/j.ccell.2020.10.001
33. Nagahashi M, Shimada Y, Ichikawa H, Kameyama H, Takabe K, Okuda S, Wakai T. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci 2019; 110(1):6-15. DOI: https://doi.org/10.1111/cas.13837
34. Bai R, Chen N, Li L, Du N, Bai L, Lv Z, Tian H, Cui J. Mechanisms of cancer resistance to immunotherapy. Front Oncol 2020; 10:1290. DOI: https://doi.org/10.3389/fonc.2020.01290
35. Hicks JK, Dunnenberger HM, Gumpper KF, Haidar CE, Hoffman JM. Integrating pharmacogenomics into electronic health records with clinical decision support. Am J Health Syst Pharm 2016; 73(23):1967-1976. DOI: https://doi.org/10.2146/ajhp160030
36. Pottier C, Fresnais M, Gilon M, Jérusalem G, Longuespée R, Sounni NE. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers (Basel) 2020; 12(3):731. DOI: https://doi.org/10.3390/cancers12030731
37. Kim M, Baek M, Kim DJ. Protein tyrosine signaling and its potential therapeutic implications in carcinogenesis. Curr Pharm Des 2017; 23(29):4226-4246. DOI: https://doi.org/10.2174/1381612823666170616082125
38. Kang ZJ, Liu YF, Xu LZ, Long ZJ, Huang D, Yang Y, Liu B, Feng JX, Pan YJ, Yan JS, Liu Q. The Philadelphia chromosome in leukemogenesis. Chin J Cancer 2016; 35:48. DOI: https://doi.org/10.1186/s40880-016-0108-0
39. Kirschner J, Cathomen T. Gene therapy for monogenic inherited disorders. Dtsch Arztebl Int 2020; 117(51-52):878-885. DOI: https://doi.org/10.3238/arztebl.2020.0878
40. Kole R, Krainer AR, Altman S. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11(2):125-140. DOI: https://doi.org/10.1038/nrd3625
41. Theodoridis PR, Bokros M, Marijan D, Balukoff NC, Wang D, Kirk CC, Budine TD, Goldsmith HD, Wang M, Audas TE, Lee S. Local translation in nuclear condensate amyloid bodies. Proc Natl Acad Sci U S A 2021; 118(7):e2014457118. DOI: https://doi.org/10.1073/pnas.2014457118
42. Waarts MR, Stonestrom AJ, Park YC, Levine RL. Targeting mutations in cancer. J Clin Invest 2022; 132(8):e154943. DOI: https://doi.org/10.1172/JCI154943
43. Mahdieh N, Rabbani B. An overview of mutation detection methods in genetic disorders. Iran J Pediatr 2013; 23(4):375-388.
44. Yip HYK, Papa A. Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells 2021; 10(3):659. DOI: https://doi.org/10.3390/cells10030659
45. Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted drug delivery - from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J Multidiscip Healthc 2021; 14:1711-1724. DOI: https://doi.org/10.2147/JMDH.S313968
46. Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 2014; 6(1):9-26. DOI: https://doi.org/10.1039/c3ib40165k
47. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 2016; 27(10):2225-2238. DOI: https://doi.org/10.1021/acs.bioconjchem.6b00437
48. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7:193. DOI: https://doi.org/10.3389/fmolb.2020.00193
49. Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG, Ogbodo JO, Umeh BU, Ossai EC, Nwanguma BC. Advances in drug delivery systems, challenges and future directions. Heliyon 2023; 9(6):e17488. DOI: https://doi.org/10.1016/j.heliyon.2023.e17488
50. Jeelani S, Reddy RC, Maheswaran T, Asokan GS, Dany A, Anand B. Theranostics: A treasured tailor for tomorrow. J Pharm Bioallied Sci 2014; 6(Suppl 1):S6-S8. DOI: https://doi.org/10.4103/0975-7406.137249
51. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62(11):1052-1063. DOI: https://doi.org/10.1016/j.addr.2010.08.004
52. Cescon DW, Kalinsky K, Parsons HA, Smith KL, Spears PA, Thomas A, Zhao F, DeMichele A. Therapeutic targeting of minimal residual disease to prevent late recurrence in hormone-receptor positive breast cancer: Challenges and new approaches. Front Oncol 2022; 11:667397. DOI: https://doi.org/10.3389/fonc.2021.667397
53. Abyzova E, Dogadina E, Rodriguez RD, Petrov I, Kolesnikova Y, Zhou M, Liu C, Sheremet E. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio 2023; 22:100784. DOI: https://doi.org/10.1016/j.mtbio.2023.100784
54. Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The promise of nanotechnology in personalized medicine. J Pers Med 2022; 12(5):673. DOI: https://doi.org/10.3390/jpm12050673
55. Stefanoudakis D, Kathuria-Prakash N, Sun AW, Abel M, Drolen CE, Ashbaugh C, Zhang S, Hui G, Tabatabaei YA, Zektser Y, Lopez LP, Pantuck A, Drakaki A. The potential revolution of cancer treatment with CRISPR technology. Cancers (Basel) 2023; 15(6):1813. DOI: https://doi.org/10.3390/cancers15061813
56. Lee HM. Strategies for manipulating T cells in cancer immunotherapy. Biomol Ther (Seoul) 2022; 30(4):299-308. DOI: https://doi.org/10.4062/biomolther.2021.180
57. Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, Asemi Z, Yousefi B. CRISPR/Cas9 gene editing: A new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022; 27(1):49. DOI: https://doi.org/10.1186/s11658-022-00348-2
58. Yuan M, Webb E, Lemoine NR, Wang Y. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses. Viruses 2016; 8(3):72. DOI: https://doi.org/10.3390/v8030072
59. Akram F, Haq IU, Sahreen S, Nasir N, Naseem W, Imitaz M, Aqeel A. CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technol Cancer Res Treat 2022; 21:15330338221132078. DOI: https://doi.org/10.1177/15330338221132078
60. Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From tumor gene editing to T cell-based immunotherapy of cancer. Front Immunol 2020; 11:2062. DOI: https://doi.org/10.3389/fimmu.2020.02062
61. Jhawar SR, Thandoni A, Bommareddy PK, Hassan S, Kohlhapp FJ, Goyal S, Schenkel JM, Silk AW, Zloza A. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol 2017; 7:202. DOI: https://doi.org/10.3389/fonc.2017.00202
62. Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene therapies for cancer: Strategies, challenges and successes. J Cell Physiol 2015; 230(2):259-71. DOI: https://doi.org/10.1002/jcp.24791
63. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: A new class of immunotherapy drugs. Nat Rev Drug Discov 2015;14(9):642-662. DOI: https://doi.org/10.1038/nrd4663. Erratum in: Nat Rev Drug Discov 2016; 15(9):660.
64. Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022; 12:940019. DOI: https://doi.org/10.3389/fonc.2022.940019
65. Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: New perspectives, challenges, and clinical developments. Front Immunol 2022; 13:925985. DOI: https://doi.org/10.3389/fimmu.2022.925985
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.