##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Aug 29, 2024

Lalit Umesh

Sanish Verma  

Abstract

The interaction between modern biomedical technologies and newly identified pathogenic microbes has become a crucial focus in the field of healthcare and illness management. The ongoing progress in technology is transforming the field of medical science. However, the advent of new and changing microbial dangers presents obstacles that require creative solutions. This article explores the delicate equilibrium between the capabilities of advanced biomedical technologies and the continuous development of disease-causing microorganisms. It provides new insights that influence the ongoing struggle between scientific advancement and the problems posed by these microbes.

##plugins.themes.bootstrap3.article.details##

Keywords

Emerging Pathogens, Fatality, Biomedical Technology, Human Crisis, Strategies

References
1. Junaid SB, Imam AA, Balogun AO, De Silva LC, Surakat YA, Kumar G, Abdulkarim M, Shuaibu AN, Garba A, Sahalu Y, Mohammed A, Mohammed TY, Abdulkadir BA, Abba AA, Kakumi NAI, Mahamad S. Recent advancements in emerging technologies for healthcare management systems: A survey. Healthcare (Basel). 2022; 10(10):1940. DOI: https://doi.org/10.3390/healthcare10101940

2. Mahara G, Tian C, Xu X, Wang W. Revolutionising health care: Exploring the latest advances in medical sciences. J Glob Health 2023; 13:03042. DOI: https://doi.org/10.7189/jogh.13.03042

3. Bhatia R. Emerging health technologies and how they can transform healthcare delivery. J Health Manag 2021; 23(1):63-73. DOI: https://doi.org/10.1177/0972063421995025

4. Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang LF, Wesolowski A, Metcalf CJE. Infectious disease in an era of global change. Nat Rev Microbiol 2022; 20(4):193-205. DOI: https://doi.org/10.1038/s41579-021-00639-z

5. Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome dynamics: A paradigm shift in combatting infectious diseases. J Pers Med. 2024; 14(2):217. DOI: https://doi.org/10.3390/jpm14020217

6. Levitt AM, Khan AS, Hughes JM. Emerging and re-emerging pathogens and diseases. Infect Dis 2010; 2010:56-69. DOI: https://doi.org/10.1016/B978-0-323-04579-7.00004-6

7. Siddiqui AH, Koirala J. Methicillin-Resistant Staphylococcus aureus. [Updated 2023 Apr 2]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK482221/

8. Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang LF, Wesolowski A, Metcalf CJE. Infectious disease in an era of global change. Nat Rev Microbiol 2022; 20(4):193-205. DOI: https://doi.org/10.1038/s41579-021-00639-z

9. Muralidar S, Ambi SV, Sekaran S, Krishnan UM. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 2020; 179:85-100. DOI: https://doi.org/10.1016/j.biochi.2020.09.018

10. Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci 2019; 1436(1):157-173. DOI: https://doi.org/10.1111/nyas.13950

11. Mojahed N, Mohammadkhani MA, Mohamadkhani A. Climate crises and developing vector-borne diseases: A narrative review. Iran J Public Health 2022; 51(12):2664-2673. DOI: https://doi.org/10.18502/ijph.v51i12.11457

12. Demongeot J, Fougère C. mRNA COVID-19 vaccines-facts and hypotheses on fragmentation and encapsulation. Vaccines (Basel) 2022; 11(1):40. DOI: https://doi.org/10.3390/vaccines11010040

13. Barrett ADT, Titball RW, MacAry PA, Rupp RE, von Messling V, Walker DH, Fanget NVJ. The rapid progress in COVID vaccine development and implementation. NPJ Vaccines 2022; 7(1):20. DOI: https://doi.org/10.1038/s41541-022-00442-8

14. Fang R, Yang X, Guo Y, Peng B, Dong R, Li S, Xu S. SARS-CoV-2 infection in animals: Patterns, transmission routes, and drivers. Eco Environ Health 2023; 3(1):45-54. DOI: https://doi.org/10.1016/j.eehl.2023.09.004

15. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2015; 109(7):309-318. DOI: https://doi.org/10.1179/2047773215Y.0000000030

16. Tosam MJ, Ambe JR, Chi PC. Global emerging pathogens, poverty and vulnerability: An ethical analysis. Socio-cult Dimen Emerg Infect Dis Afr 2019; 2019 :243-253. DOI: https://doi.org/10.1007/978-3-030-17474-3_18

17. Zhang XX, Jin YZ, Lu YH, Huang LL, Wu CX, Lv S, Chen Z, Xiang H, Zhou XN. Infectious disease control: from health security strengthening to health systems improvement at global level. Glob Health Res Policy 2023; 8(1):38. DOI: https://doi.org/10.1186/s41256-023-00319-w

18. + Cheng Y, Zhang Z, Shu Y, Ren L, Kang M, Kong D, Shi X, Lv Q, Chen Z, Li Y, Zhang R, Lu P, Lu Y, Liu T, Chen N, Xiong H, Du C, Yuan J, Wang L, Liu R, Chen W, Li X, Lin Q, Li G, Zhang X, Yuan J, Wang T, Guo Y, Lu J, Zou X, Feng T. Expert consensus on One Health for establishing an enhanced and integrated surveillance system for key infectious diseases. Infect Med (Beijing) 2024; 3(2):100106. DOI: https://doi.org/10.1016/j.imj.2024.100106

19. Piscitelli P, Miani A. Climate change and infectious diseases: Navigating the intersection through innovation and interdisciplinary approaches. Int J Environ Res Public Health 2024; 21(3):314. DOI: https://doi.org/10.3390/ijerph21030314

20. Grobusch LC, Grobusch MP. A hot topic at the environment-health nexus: investigating the impact of climate change on infectious diseases. Int J Infect Dis 2022; 116:7-9. DOI: https://doi.org/10.1016/j.ijid.2021.12.350

21. Bianconi I, Aschbacher R, Pagani E. Current uses and future perspectives of genomic technologies in clinical microbiology. Antibiotics (Basel) 2023; 12(11):1580. DOI: https://doi.org/10.3390/antibiotics12111580

22. Adalja AA, Watson M, Toner ES, Cicero A, Inglesby TV. Characteristics of microbes most likely to cause pandemics and global catastrophes. Curr Top Microbiol Immunol 2019; 424:1-20. DOI: https://doi.org/10.1007/82_2019_176

23. Khubchandani J, Jordan TR, Yang YT. Ebola, Zika, Corona…What is next for our world? Int J Environ Res Public Health 2020; 17(9):3171. DOI: https://doi.org/10.3390/ijerph17093171

24. Williams BA, Jones CH, Welch V, True JM. Outlook of pandemic preparedness in a post-COVID-19 world. NPJ Vaccines 2023; 8(1):178. DOI: https://doi.org/10.1038/s41541-023-00773-0

25. Samsudin EZ, Yasin SM, Ruslan NH, Abdullah NN, Noor AFA, Hair AFA. Socioeconomic impacts of airborne and droplet-borne infectious diseases on industries: A systematic review. BMC Infect Dis 2024; 24(1):93. DOI: https://doi.org/10.1186/s12879-024-08993-y

26. Naseer S, Khalid S, Parveen S, Abbass K, Song H, Achim MV. COVID-19 outbreak: Impact on global economy. Front Public Health 2023; 10:1009393. DOI: https://doi.org/10.3389/fpubh.2022.1009393

27. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative Review. Pharmaceuticals (Basel) 2023; 16(11):1615. DOI: https://doi.org/10.3390/ph16111615

28. Majumder MAA, Rahman S, Cohall D, Bharatha A, Singh K, Haque M, Gittens-St Hilaire M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect Drug Resist 2020; 13:4713-4738. DOI: https://doi.org/10.2147/IDR.S290835

29. Saeed F, Mihan R, Mousavi SZ, Reniers RL, Bateni FS, Alikhani R, Mousavi SB. A narrative review of stigma related to infectious disease outbreaks: What can be learned in the face of the Covid-19 pandemic? Front Psychiatry 2020; 11:565919. DOI: https://doi.org/10.3389/fpsyt.2020.565919

30. Singer PM, Willison CE, Greer SL. Infectious disease, public health, and politics: United States response to Ebola and Zika. J Public Health Policy 2020; 41(4):399-409. DOI: https://doi.org/10.1057/s41271-020-00243-0

31. Madhav N, Oppenheim B, Gallivan M, et al. Pandemics: Risks, Impacts, and Mitigation. In: Jamison DT, Gelband H, Horton S, et al., editors. Disease Control Priorities: Improving Health and Reducing Poverty. 3rd edition. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2017 Nov 27. Chapter 17. DOI: https://doi.org/10.1596/978-1-4648-0527-1_ch17

32. Clift C, Salisbury DM. Enhancing the role of vaccines in combatting antimicrobial resistance. Vaccine 2017; 35(48 Pt B):6591-6593. DOI: https://doi.org/10.1016/j.vaccine.2017.09.053

33. Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 2021 May; 19(5):287-302. DOI: https://doi.org/10.1038/s41579-020-00506-3

34. Institute of Medicine (US) Forum on Microbial Threats; Knobler S, Mahmoud A, Lemon S, et al., editors. The Impact of Globalization on Infectious Disease Emergence and Control: Exploring the Consequences and Opportunities: Workshop Summary. Washington (DC): National Academies Press (US); 2006. Summary and Assessment. Available at: https://www.ncbi.nlm.nih.gov/books/NBK56579/

35. Hameed M, Najafi M, Cheeti S, Sheokand A, Mago A, Desai S. Factors influencing international collaboration on the prevention of COVID-19. Public Health 2022; 212:95-101. DOI: https://doi.org/10.1016/j.puhe.2022.08.017

36. Kokudo N, Sugiyama H. Call for international cooperation and collaboration to effectively tackle the COVID-19 pandemic. Glob Health Med 2020; 2(2):60-62. DOI: https://doi.org/10.35772/ghm.2020.01019

37. Lal A, Abdalla SM, Chattu VK, Erondu NA, Lee TL, Singh S, Abou-Taleb H, Vega Morales J, Phelan A. Pandemic preparedness and response: Exploring the role of universal health coverage within the global health security architecture. Lancet Glob Health 2022; 10(11):e1675-e1683. DOI: https://doi.org/10.1016/S2214-109X(22)00341-2

38. Church DL. Major factors affecting the emergence and re-emergence of infectious diseases. Clin Lab Med 2004; 24(3):559-586, v. DOI: https://doi.org/10.1016/j.cll.2004.05.008

39. Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang LF, Wesolowski A, Metcalf CJE. Infectious disease in an era of global change. Nat Rev Microbiol 2022; 20(4):193-205. DOI: https://doi.org/10.1038/s41579-021-00639-z

40. Abbo LM, Vasiliu-Feltes I. Disrupting the infectious disease ecosystem in the digital precision health era innovations and converging emerging technologies. Antimicrob Agents Chemother 2023; 67(10):e0075123. DOI: https://doi.org/10.1128/aac.00751-23

41. Abdallah S, Sharifa M, I Kh Almadhoun MK, Khawar MM Sr, Shaikh U, Balabel KM, Saleh I, Manzoor A, Mandal AK, Ekomwereren O, Khine WM, Oyelaja OT. The impact of artificial intelligence on optimizing diagnosis and treatment plans for rare genetic disorders. Cureus 2023; 15(10):e46860. DOI: https://doi.org/10.7759/cureus.46860

42. Sawicka B, Aslan I, Della Corte V, Periasamy A, Krishnamurthy SK, Mohammed A, Tolba Said MM, Saravanan P, Del Gaudio G, Adom D, Sawicki B, Nevola G, Hanchate DB, Umachandran K. The coronavirus global pandemic and its impacts on society. Coronavirus Drug Discov 2022:267-311. DOI: https://doi.org/10.1016/B978-0-323-85156-5.00037-7

43. Ilyichev AA, Orlova LA, Sharabrin SV, Karpenko LI. mRNA technology as one of the promising platforms for the SARS-CoV-2 vaccine development. Vavilovskii Zhurnal Genet Selektsii 2020; 24(7):802-807. DOI: https://doi.org/10.18699/VJ20.676

44. Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY, Alawad AO, Tawfik EA. Recent advancement in mRNA vaccine development and applications. Pharmaceutics 2023; 15(7):1972. DOI: https://doi.org/10.3390/pharmaceutics15071972

45. Kuter BJ, Offit PA, Poland GA. The development of COVID-19 vaccines in the United States: Why and how so fast? Vaccine 2021; 39(18):2491-2495. DOI: https://doi.org/10.1016/j.vaccine.2021.03.077

46. Chakraborty C, Bhattacharya M, Dhama K. SARS-CoV-2 vaccines, vaccine development technologies, and significant efforts in vaccine development during the pandemic: The lessons learned might help to fight against the next pandemic. Vaccines (Basel) 2023; 11(3):682. DOI: https://doi.org/10.3390/vaccines11030682

47. Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021; 39(16):2190-2200. DOI: https://doi.org/10.1016/j.vaccine.2021.03.038

48. Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, Khan W. A Comprehensive Review of mRNA Vaccines. Int J Mol Sci 2023; 24(3):2700. DOI: https://doi.org/10.3390/ijms24032700

49. Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-based vaccine for COVID-19: They are new but not unknown! Vaccines (Basel) 2023; 11(3):507. DOI: https://doi.org/10.3390/vaccines11030507

50. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat Rev Drug Discov 2021; 20(11):817-838. DOI: https://doi.org/10.1038/s41573-021-00283-5. Erratum in: Nat Rev Drug Discov. 2021 Nov;20(11):880. DOI: https://doi.org/10.1038/s41573-021-00321-2

51. Koppu V, Poloju D, Puvvala B, Madineni K, Balaji S, Sheela CMP, Manchikanti SSC, Moon SM. Current perspectives and future prospects of mRNA vaccines against viral diseases: A brief review. Int J Mol Cell Med 2022; 11(3):260-272. DOI: https://doi.org/10.22088/IJMCM.BUMS.11.3.260

52. Acevedo-Whitehouse K, Bruno R. Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses 2023; 171:111015. DOI: https://doi.org/10.1016/j.mehy.2023.111015

53. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C, Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav B, Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T; COVE Study Group. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5):403-416. DOI: https://doi.org/10.1056/NEJMoa2035389

54. Wu X, Xu K, Zhan P, Liu H, Zhang F, Song Y, Lv T. Comparative efficacy and safety of COVID-19 vaccines in phase III trials: A network meta-analysis. BMC Infect Dis 2024; 24(1):234. DOI: https://doi.org/10.1186/s12879-023-08754-3

55. Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: A global health crisis. Physiol Genomics 2020; 52(11):549-557. DOI: https://doi.org/10.1152/physiolgenomics.00089.2020

56. Mehta S, Machado F, Kwizera A, Papazian L, Moss M, Azoulay É, Herridge M. COVID-19: A heavy toll on health-care workers. Lancet Respir Med 2021; 9(3):226-228. DOI: https://doi.org/10.1016/S2213-2600(21)00068-0

57. Mehedi N, Ismail Hossain M. Experiences of the frontline healthcare professionals amid the COVID-19 health hazard: A phenomenological investigation. Inquiry 2022; 59:469580221111925. DOI: https://doi.org/10.1177/00469580221111925

58. Søvold LE, Naslund JA, Kousoulis AA, Saxena S, Qoronfleh MW, Grobler C, Münter L. Prioritizing the mental health and well-being of healthcare workers: An urgent global public health priority. Front Public Health 2021; 9:679397. DOI: https://doi.org/10.3389/fpubh.2021.679397

59. Shapoval V, Hägglund P, Pizam A, Abraham V, Carlbäck M, Nygren T, Smith RM. The COVID-19 pandemic effects on the hospitality industry using social systems theory: A multi-country comparison. Int J Hosp Manag 2021; 94:102813. DOI: https://doi.org/10.1016/j.ijhm.2020.102813
How to Cite
Umesh, L., & Verma, S. (2024). Modern Biomedical Technologies versus Emerging Pathogenic Microbes: Insights into the Confronting Situation. Science Insights, 45(2), 1475–1481. https://doi.org/10.15354/si.24.re1042
Section
Review