##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 29, 2024

William B. Wooten  

Abstract

Long COVID, a condition characterized by persistent symptoms following acute COVID-19 infection, has emerged as a significant health concern affecting a growing number of individuals worldwide. As researchers delve deeper into the complexities of long COVID, a potential link between mitochondrial dysfunction and the prolonged symptoms experienced by patients is being explored. Mitochondria, known as the powerhouse of the cell, play a crucial role in energy production and cellular function. Understanding the interplay between long COVID and mitochondrial dysfunction could provide valuable insights into the underlying mechanisms of this condition and find the way for novel therapeutic approaches.

##plugins.themes.bootstrap3.article.details##

Keywords

Long COVID, Mitochondrial Dysfunction, Energy Imbalance, Therapeutic Implications, Outcomes

Supporting Agencies

No funding source declared.

References
Al-Aly, Z., & Topol, E. (2024). Solving the puzzle of long Covid. Science, 383(6685), 830-832. DOI: https://doi.org/10.1126/science.adl0867

Appelman, B., Charlton, B. T., Goulding, R. P., Kerkhoff, T. J., Breedveld, E. A., Noort, W., Offringa, C., Bloemers, F. W., Van Weeghel, M., Schomakers, B. V., Coelho, P., Posthuma, J. J., Aronica, E., Wiersinga, W. J., Van Vugt, M., & Wüst, R. C. I. (2024).
Muscle abnormalities worsen after post-exertional malaise in long COVID. Nature Communications, 15(1). DOI: https://doi.org/10.1038/s41467-023-44432-3

Arun, S., Liu, L., & Donmez, G. (2016). Mitochondrial biology and neurological diseases. Current Neuropharmacology, 14(2), 143-154. DOI: https://doi.org/10.2174/1570159x13666150703154541

Ashok, D., Liu, T., Criscione, J., Prakash, M., Kim, B., Chow, J., Craney, M., Papanicolaou, K., Sidor, A., Foster, D. B., Pekosz, A., Villano, J., Kim, D., & O’Rourke, B. (2024). Innate immune activation and mitochondrial ros invoke persistent cardiac conduction system dysfunction after COVID-19. bioRxiv (Cold Spring Harbor Laboratory). DOI: https://doi.org/10.1101/2024.01.05.574280

Bohmwald, K., Diethelm-Varela, B., Rodríguez-Guilarte, L., Rivera, T., Riedel, C. A., González, P. A., & Kalergis, A. M. (2024). Pathophysiological, immunological, and inflammatory features of long COVID. Frontiers in Immunology, 15. DOI: https://doi.org/10.3389/fimmu.2024.1341600

Cervia-Hasler, C., Brüningk, S. C., Hoch, T., Fan, B., Muzio, G., Thompson, R. C., Ceglarek, L., Meledin, R., Westermann, P., Emmenegger, M., Taeschler, P., Zurbuchen, Y., Pons, M., Menges, D., Ballouz, T., Cervia-Hasler, S., Adamo, S., Merad, M., Charney, A. W., . . . Boyman, O. (2024). Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science, 383(6680), eadg7942. DOI: https://doi.org/10.1126/science.adg7942

Cezar, R., Kundura, L., André, S., Lozano, C., Vincent, T., Muller, L., Lefrant, J., Roger, C., Claret, P., Duvnjak, S., Loubet, P., Sotto, A., Tran, T., Estaquier, J., & Corbeau, P. (2024). T4 apoptosis in the acute phase of SARS-CoV-2 infection predicts long COVID. Frontiers in Immunology, 14. DOI: https://doi.org/10.3389/fimmu.2023.1335352

Chang, Y., & Wei, A. (2024). Transcriptome and machine learning analysis of the impact of COVID-19 on mitochondria and multiorgan damage. PLoS ONE, 19(1), e0297664. DOI: https://doi.org/10.1371/journal.pone.0297664

Chen, H., Lu, M., Lyu, Q., Shi, L., Zhou, C., Li, M., Feng, S., Liang, X., Zhou, X., & Ren, L. (2024). Mitochondrial dynamics dysfunction: Unraveling the hidden link to depression. Biomedicine & Pharmacotherapy, 175, 116656. DOI: https://doi.org/10.1016/j.biopha.2024.116656

Chen, T., Chang, C., & Hung, P. (2023). Possible pathogenesis and prevention of long COVID: SARS-CoV-2-induced mitochondrial disorder. International Journal of Molecular Sciences, 24(9), 8034. DOI: https://doi.org/10.3390/ijms24098034

Damiano, R. F., De Almeida Rocca, C. C., De Pádua Serafim, A., Loftis, J. M., Talib, L. L., Pan, P. M., Cunha-Neto, E., Kalil, J., De Castro, G. S., Seelaender, M., Guedes, B. F., Marie, S. K. N., De Souza, H. P., Nitrini, R., Miguel, E. C., Busatto, G., & Forlenza, O. V. (2023). Cognitive impairment in long-COVID and its association with persistent dysregulation in inflammatory markers. Frontiers in Immunology, 14. DOI: https://doi.org/10.3389/fimmu.2023.1174020

Dirajlal-Fargo, S., Maison, D. P., Durieux, J. C., Andrukhiv, A., Funderburg, N., Ailstock, K., Gerschenson, M., & Mccomsey, G. A. (2024). Altered mitochondrial respiration in peripheral blood mononuclear cells of post-acute sequelae of SARS-CoV-2 infection. Mitochondrion, 75, 101849. DOI: https://doi.org/10.1016/j.mito.2024.101849

Fernández-Ayala, D. J. M., Navas, P., & López-Lluch, G. (2020). Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Experimental Gerontology, 142, 111147. DOI: https://doi.org/10.1016/j.exger.2020.111147

Guntur, V. P., Nemkov, T., De Boer, E., Mohning, M. P., Baraghoshi, D., Cendali, F. I., San-Millán, I., Petrache, I., & D’Alessandro, A. (2022). Signatures of mitochondrial dysfunction and impaired fatty acid metabolism in plasma of patients with post-acute sequelae of COVID-19 (PASC). Metabolites, 12(11), 1026. DOI: https://doi.org/10.3390/metabo12111026

Guo, P., Ballesteros, A. B., Yeung, S. P., Liu, R., Saha, A., Curtis, L., Kaser, M., Haggard, M. P., & Cheke, L. G. (2022). COVCOG 2: Cognitive and memory deficits in long COVID: A second publication from the COVID and cognition study. Frontiers in Aging Neuroscience, 14. DOI: https://doi.org/10.3389/fnagi.2022.804937

Huang, C., Hu, X., Wang, D., Gong, R., Wang, Q., Ren, F., Wu, Y., Chen, J., Xiong, X., Li, H., Wang, Q., Long, G., Zhang, D., & Han, Y. (2024). Multi-cohort study on cytokine and chemokine profiles in the progression of COVID-19. Scientific Reports, 14(1). DOI: https://doi.org/10.1038/s41598-024-61133-z

Kang, Y., Lu, S., Zhong, R., You, J., Chen, J., Li, L., Huang, R., Xie, Y., Chen, F., Chen, J., & Chen, L. (2024). The immune inflammation factors associated with disease severity and poor prognosis in patients with COVID-19: A retrospective cohort study. Heliyon, 10(1), e23583. DOI: https://doi.org/10.1016/j.heliyon.2023.e23583

Kumar, R. (2021). Cytokine storm and signaling pathways: Pathogenesis of SARS-CoV-2 infection, managing and treatment strategies. Biomedical Journal of Scientific & Technical Research, 35(3). DOI: https://doi.org/10.26717/bjstr.2021.35.005715

Kusumawardhani, N. Y., Putra, I. C. S., Kamarullah, W., Afrianti, R., Pramudyo, M., Iqbal, M., Prameswari, H. S., Achmad, C., Tiksnadi, B. B., & Akbar, M. R. (2023). Cardiovascular disease in post-acute COVID-19 syndrome: A comprehensive review of pathophysiology and diagnosis approach. Reviews in Cardiovascular Medicine, 24(1), 28. DOI: https://doi.org/10.31083/j.rcm2401028

Ladds, E., Darbyshire, J. L., Bakerly, N. D., Falope, Z., & Tucker-Bell, I. (2024). Cognitive dysfunction after covid-19. BMJ, e075387. DOI: https://doi.org/10.1136/bmj-2023-075387

Mantle, D., Hargreaves, I. P., Domingo, J. C., & Castro-Marrero, J. (2024). Mitochondrial dysfunction and coenzyme Q10 supplementation in post-viral fatigue syndrome: An overview. International Journal of Molecular Sciences, 25(1), 574. DOI: https://doi.org/10.3390/ijms25010574

Mostafa, R. H., & Moustafa, A. (2024). Beyond acute infection: Molecular mechanisms underpinning cardiovascular complications in long COVID. Frontiers in Cardiovascular Medicine, 11. DOI: https://doi.org/10.3389/fcvm.2024.1268571

Noonong, K., Chatatikun, M., Surinkaew, S., Kotepui, M., Hossain, R., Bunluepuech, K., Noothong, C., Tedasen, A., Klangbud, W. K., Imai, M., Kawakami, F., Kubo, M., Kitagawa, Y., Ichikawa, H., Kanekura, T., Sukati, S., Somsak, V., Udomwech, L., Ichikawa, T., . . . Majima, H. J. (2023). Mitochondrial oxidative stress, mitochondrial ROS storms in long COVID pathogenesis. Frontiers in Immunology, 14. DOI: https://doi.org/10.3389/fimmu.2023.1275001

Nunn, A. V. W., Guy, G. W., Brysch, W., & Bell, J. D. (2022). Understanding long COVID; mitochondrial health and adaptation—Old pathways, new problems. Biomedicines, 10(12), 3113. DOI: https://doi.org/10.3390/biomedicines10123113

Pozzi, A. (2022). COVID-19 and mitochondrial non-coding RNAs: New insights from published data. Frontiers in Physiology, 12. DOI: https://doi.org/10.3389/fphys.2021.805005

Ruf, W. (2024). Immune damage in Long Covid. Science, 383(6680), 262-263. DOI: https://doi.org/10.1126/science.adn1077
Ryback, R., & Eirin, A. (2022). Mitochondria, a missing link in COVID-19 heart failure and arrest? Frontiers in Cardiovascular Medicine, 8. DOI: https://doi.org/10.3389/fcvm.2021.830024

Saito, S., Shahbaz, S., Luo, X., Osman, M., Redmond, D., Tervaert, J. W. C., Li, L., & Elahi, S. (2024). Metabolomic and immune alterations in long COVID patients with chronic fatigue syndrome. Frontiers in Immunology, 15. DOI: https://doi.org/10.3389/fimmu.2024.1341843

Sakellaropoulos, S. G., Ali, M., Papadis, A., Mohammed, M., Mitsis, A., & Zivzivadze, Z. (2022). Is Long COVID syndrome a transient mitochondriopathy newly discovered: Implications of CPET. Cardiology Research, 13(5), 264-267. DOI: https://doi.org/10.14740/cr1419

Tandon, P., Abrams, N. D., Avula, L. R., Carrick, D. M., Chander, P., Divi, R. L., Dwyer, J. T., Gannot, G., Gordiyenko, N., Liu, Q., Moon, K., PrabhuDas, M., Singh, A., Tilahun, M. E., Satyamitra, M. M., Wang, C., Warren, R., & Liu, C. H. (2024). Unraveling links between chronic inflammation and long COVID: Workshop report. The Journal of Immunology, 212(4), 505-512. DOI: https://doi.org/10.4049/jimmunol.2300804

Toepfner, N., Brinkmann, F., Augustin, S., Stojanov, S., & Behrends, U. (2024). Long COVID in pediatrics—Epidemiology, diagnosis, and management. European Journal of Pediatrics, 183(4), 1543-1553. DOI: https://doi.org/10.1007/s00431-023-05360-y

Tripathi, K., & Ben-Shachar, D. (2024). Mitochondria in the central nervous system in health and disease: The puzzle of the therapeutic potential of mitochondrial transplantation. Cells, 13(5), 410. DOI: https://doi.org/10.3390/cells13050410

Xu, K., Saaoud, F., Shao, Y., Lu, Y., Yang, Q., Jiang, X., Wang, H., & Yang, X. (2024). A new paradigm in intracellular immunology: Mitochondria emerging as leading immune organelles. Redox Biology, 76, 103331. DOI: https://doi.org/10.1016/j.redox.2024.103331

Zhang, Y., Bharathi, V., Dokoshi, T., De Anda, J., Ursery, L. T., Kulkarni, N. N., Nakamura, Y., Chen, J., Luo, E. W. C., Wang, L., Xu, H., Coady, A., Zurich, R., Lee, M. W., Matsui, T., Lee, H., Chan, L. C., Schepmoes, A. A., Lipton, M. S., . . . Wong, G. C. L. (2024). Viral afterlife: SARS-CoV-2 as a reservoir of immunomimetic peptides that reassemble into proinflammatory supramolecular complexes. Proceedings of the National Academy of Sciences, 121(6). DOI: https://doi.org/10.1073/pnas.2300644120
How to Cite
Wooten, W. B. (2024). Is Long COVID a Syndrome from Mitochondrial Dysfunction?. Science Insights, 45(3), 1501–1505. https://doi.org/10.15354/si.24.op196
Section
Opinion