Neurological Mechanisms of Long COVID
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection, refers to a condition where individuals continue to experience a range of symptoms weeks to months after the acute phase of COVID-19 has resolved. While respiratory symptoms are commonly associated with COVID-19, emerging evidence suggests that neurological manifestations play a significant role in the long-term effects of the disease. This article explores the neurological basis of long COVID, delving into the various symptoms, pathophysiological mechanisms, impact on cognitive function, neuroimaging findings, current treatment approaches, long-term prognosis, and future research directions in understanding and managing the neurological sequelae of long COVID.
##plugins.themes.bootstrap3.article.details##
Long COVID, Neurological Manifestations, Mechanisms, Interventions, Prognosis
No funding source declared.
Al-Aly, Z. (2022). Long-term neurological sequelae of SARS-CoV-2 infection. Nature Medicine, 28(11), 2269-2270. DOI: https://doi.org/10.1038/s41591-022-02018-4
Albaqer, H. A., Al-Jibouri, K. J., Martin, J., Al-Amran, F. G., Rawaf, S., & Yousif, M. G. (2023). Long-term neurological sequelae in post-COVID-19 patients: A machine learning approach to predict outcomes. arXiv (Cornell University). DOI: https://doi.org/10.48550/arxiv.2309.09993
Baig, A. M., Greig, N. H., Gerlach, J., Salunke, P., Fabrowski, M., Viduto, V., & Ali, T. (2022). Underlying causes and treatment modalities for neurological deficits in COVID-19 and long-COVID. ACS Chemical Neuroscience, 13(20), 2934-2938. DOI: https://doi.org/10.1021/acschemneuro.2c00482
Becker, R. C. (2021). Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor’s page series. Journal of Thrombosis and Thrombolysis, 52(3), 692-707. DOI: https://doi.org/10.1007/s11239-021-02549-6
Bondira, I. P., Lambert-Cheatham, N. A., Sakuru, R. C., Polinger-Hyman, D. J., Pipitone, B. D., Arnold, K. E., Nagia, L., & Kaufman, D. I. (2021). Inability to read after prolonged COVID-19 hospitalization: MRI with clinical correlation. Journal of Neuro-Ophthalmology, 41(3), e277-e278. DOI: https://doi.org/10.1097/wno.0000000000001121
Buonsenso, D., & Tantisira, K. G. (2024). Long COVID and SARS-CoV-2 persistence: New answers, more questions. The Lancet Infectious Diseases. DOI: https://doi.org/10.1016/s1473-3099(24)00216-0
Cabral, D. F., Rice, J., Morris, T. P., Rundek, T., Pascual-Leone, A., & Gomes-Osman, J. (2019). Exercise for brain health: An investigation into the underlying mechanisms guided by dose. Neurotherapeutics, 16(3), 580-599. DOI: https://doi.org/10.1007/s13311-019-00749-w
Chen, Y., Yang, W., Chen, F., & Cui, L. (2022). COVID-19 and cognitive impairment: Neuroinvasive and blood-brain barrier dysfunction. Journal of Neuroinflammation, 19(1), 222. DOI: https://doi.org/10.1186/s12974-022-02579-8
Chmiel, J., Kurpas, D., Rybakowski, F., & Leszek, J. (2024). The effectiveness of transcranial direct current stimulation (tDCS) in binge eating disorder (BED)—Review and insight into the mechanisms of action. Nutrients, 16(10), 1521. DOI: https://doi.org/10.3390/nu16101521
Cho, S., White, N., Premraj, L., Battaglini, D., Fanning, J., Suen, J., Bassi, G. L., Fraser, J., Robba, C., Griffee, M., Singh, B., Merson, L., Solomon, T., Thomson, D., Abbas, A., Abdulkadir, N. N., Abe, R., Abel, L., Absil, L., . . . Barclay, W. (2022). Neurological manifestations of COVID-19 in adults and children. Brain, 146(4), 1648-1661. DOI: https://doi.org/10.1093/brain/awac332
Churchill, N. W., Roudaia, E., Chen, J. J., Gilboa, A., Sekuler, A., Ji, X., Gao, F., Lin, Z., Jegatheesan, A., Masellis, M., Goubran, M., Rabin, J. S., Lam, B., Cheng, I., Fowler, R., Heyn, C., Black, S. E., MacIntosh, B. J., Graham, S. J., & Schweizer, T. A. (2023). Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals. Frontiers in Neurology, 14, 1136408. DOI: https://doi.org/10.3389/fneur.2023.1136408
Ciaccio, M., Lo Sasso, B., Scazzone, C., Gambino, C. M., Ciaccio, A. M., Bivona, G., Piccoli, T., Giglio, R. V., & Agnello, L. (2021). COVID-19 and Alzheimer’s disease. Brain Sciences, 11(3), 305. DOI: https://doi.org/10.3390/brainsci11030305
Compagno, S., Palermi, S., Pescatore, V., Brugin, E., Sarto, M., Marin, R., Calzavara, V., Nizzetto, M., Scevola, M., Aloi, A., Biffi, A., Zanella, C., Carretta, G., Gallo, S., & Giada, F. (2022). Physical and psychological reconditioning in long COVID syndrome: Results of an out-of-hospital exercise and psychological - based rehabilitation program. IJC Heart & Vasculature, 41, 101080. DOI: https://doi.org/10.1016/j.ijcha.2022.101080
Crunfli, F., Carregari, V. C., Veras, F. P., Silva, L. S., Nogueira, M. H., Antunes, A. S. L. M., Vendramini, P. H., Valença, A. G. F., Brandão-Teles, C., Da Silva Zuccoli, G., Reis-De-Oliveira, G., Silva-Costa, L. C., Saia-Cereda, V. M., Smith, B. J., Codo, A. C., De Souza, G. F., Muraro, S. P., Parise, P. L., Toledo-Teixeira, D. A., . . . Martins-De-Souza, D. (2022). Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proceedings of the National Academy of Sciences, 119(35), e2200960119. DOI: https://doi.org/10.1073/pnas.2200960119
Dani, M., Dirksen, A., Taraborrelli, P., Torocastro, M., Panagopoulos, D., Sutton, R., & Lim, P. B. (2020). Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clinical Medicine, 21(1), e63-e67. DOI: https://doi.org/10.7861/clinmed.2020-0896
De Felice, F. G., Tovar-Moll, F., Moll, J., Munoz, D. P., & Ferreira, S. T. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the central nervous system. Trends in Neurosciences, 43(6), 355-357. DOI: https://doi.org/10.1016/j.tins.2020.04.004
De Miranda, D. a. P., Gomes, S. V. C., Filgueiras, P. S., Corsini, C. A., Almeida, N. B. F., Silva, R. A., Medeiros, M. I. V. a. R. C., Vilela, R. V. R., Fernandes, G. R., & Grenfell, R. F. Q. (2022). Long COVID-19 syndrome: A 14-months longitudinal study during the two first epidemic peaks in Southeast Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 116(11), 1007-1014. DOI: https://doi.org/10.1093/trstmh/trac030
De Paula, J. J., Paiva, R. E. R. P., Souza-Silva, N. G., Rosa, D. V., De Souza Duran, F. L., Coimbra, R. S., De Souza Costa, D., Dutenhefner, P. R., Oliveira, H. S. D., Camargos, S. T., Vasconcelos, H. M. M., De Oliveira Carvalho, N., Da Silva, J. B., Silveira, M. B., Malamut, C., Oliveira, D. M., Molinari, L. C., De Oliveira, D. B., Januário, J. N., . . . Romano-Silva, M. A. (2022). Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Molecular Psychiatry, 28(2), 553-563. DOI: https://doi.org/10.1038/s41380-022-01632-5
De Tanti, A., Conforti, J., Bruni, S., De Gaetano, K., Cappalli, A., Basagni, B., Bertoni, D., & Saviola, D. (2023). Cognitive and psychological outcomes and follow-up in severely affected COVID-19 survivors admitted to a rehabilitation hospital. Neurological Sciences, 44(5), 1481-1489. DOI: https://doi.org/10.1007/s10072-023-06665-4
Duan, K., Premi, E., Pilotto, A., Cristillo, V., Benussi, A., Libri, I., Giunta, M., Bockholt, H. J., Liu, J., Campora, R., Pezzini, A., Gasparotti, R., Magoni, M., Padovani, A., & Calhoun, V. D. (2021). Alterations of frontal-temporal gray matter volume associate with clinical measures of older adults with COVID-19. Neurobiology of Stress, 14, 100326. DOI: https://doi.org/10.1016/j.ynstr.2021.100326
Ellul, M., Varatharaj, A., Nicholson, T. R., Pollak, T. A., Thomas, N., Easton, A., Zandi, M. S., Manji, H., Solomon, T., Carson, A., Turner, M. R., Kneen, R., Galea, I., Pett, S., Thomas, R. H., & Michael, B. D. (2020). Defining causality in COVID-19 and neurological disorders. Journal of Neurology Neurosurgery & Psychiatry, 91(8), 811-812. DOI: https://doi.org/10.1136/jnnp-2020-323667
Erickson, M. A., Rhea, E. M., Knopp, R. C., & Banks, W. A. (2021). Interactions of SARS-CoV-2 with the blood-brain barrier. International Journal of Molecular Sciences, 22(5), 2681. DOI: https://doi.org/10.3390/ijms22052681
Eslinger, P. J., Flaherty-Craig, C. V., & Chakara, F. M. (2013). Rehabilitation and management of executive function disorders. Handbook of Clinical Neurology, 110, 365-376. DOI: https://doi.org/10.1016/b978-0-444-52901-5.00031-9
Ewing, A., Joffe, D., Blitshteyn, S., Brooks, A. E., Wist, J., B, Y., Bilodeau, S., Curtin, J., Duncan, R., Faghy, M. A., Galland, L., Pretorius, E., Salamon, S., Buonsenso, D., Hastie, C., Kane, B., Khan, M. A., Lal, A., Lau, D., . . . Taylor, C. (2024). Long COVID clinical evaluation, research and impact on society: A global expert consensus. Preprints With the Lancet. DOI: https://doi.org/10.2139/ssrn.4931063
Ferrando, S. J., Klepacz, L., Lynch, S., Tavakkoli, M., Dornbush, R., Baharani, R., Smolin, Y., & Bartell, A. (2020). COVID-19 psychosis: A potential new neuropsychiatric condition triggered by novel coronavirus infection and the inflammatory response? Psychosomatics, 61(5), 551-555. DOI: https://doi.org/10.1016/j.psym.2020.05.012
German, E. R., Jairath, M. K., & Caston, J. (2023). Treatment of long-haul COVID patients with off-label acyclovir. Cureus, 15(4), e37926. DOI: https://doi.org/10.7759/cureus.37926
Gómez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R., & Edgerton, V. R. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiology, 88(5), 2187-2195. DOI: https://doi.org/10.1152/jn.00152.2002
Hashimoto, K. (2023). Detrimental effects of COVID-19 in the brain and therapeutic options for long COVID: The role of Epstein-Barr virus and the gut-brain axis. Molecular Psychiatry, 28(12), 4968-4976. DOI: https://doi.org/10.1038/s41380-023-02161-5
Holdsworth, D. A., Chamley, R., Barker-Davies, R., O’Sullivan, O., Ladlow, P., Mitchell, J. L., Dewson, D., Mills, D., May, S. L. J., Cranley, M., Xie, C., Sellon, E., Mulae, J., Naylor, J., Raman, B., Talbot, N. P., Rider, O. J., Bennett, A. N., & Nicol, E. D. (2022). Comprehensive clinical assessment identifies specific neurocognitive deficits in working-age patients with long-COVID. PLoS ONE, 17(6), e0267392. DOI: https://doi.org/10.1371/journal.pone.0267392
Houben, S., & Bonnechère, B. (2022). The impact of COVID-19 infection on cognitive function and the implication for rehabilitation: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 19(13), 7748. DOI: https://doi.org/10.3390/ijerph19137748
Jammoul, M., Naddour, J., Madi, A., Reslan, M. A., Hatoum, F., Zeineddine, J., Abou-Kheir, W., & Lawand, N. (2022). Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Autonomic Neuroscience, 245, 103071. DOI: https://doi.org/10.1016/j.autneu.2022.103071
Jiang, Y., Jessee, W., Hoyng, S., Borhani, S., Liu, Z., Zhao, X., Price, L. K., High, W., Suhl, J., & Cerel-Suhl, S. (2022). Sharpening working memory with real-time electrophysiological brain signals: Which neurofeedback paradigms work? Frontiers in Aging Neuroscience, 14, 780817. DOI: https://doi.org/10.3389/fnagi.2022.780817
Kempuraj, D., Aenlle, K. K., Cohen, J., Mathew, A., Isler, D., Pangeni, R. P., Nathanson, L., Theoharides, T. C., & Klimas, N. G. (2023). COVID-19 and long COVID: Disruption of the neurovascular unit, blood-brain barrier, and tight junctions. The Neuroscientist, 30(4), 421-439. DOI: https://doi.org/10.1177/10738584231194927
Kim, W. S. H., Ji, X., Roudaia, E., Chen, J. J., Gilboa, A., Sekuler, A., Gao, F., Lin, Z., Jegatheesan, A., Masellis, M., Goubran, M., Rabin, J. S., Lam, B., Cheng, I., Fowler, R., Heyn, C., Black, S. E., Graham, S. J., & MacIntosh, B. J. (2022). MRI assessment of cerebral blood flow in nonhospitalized adults who self-isolated due to COVID-19. Journal of Magnetic Resonance Imaging, 58(2), 593-602. DOI: https://doi.org/10.1002/jmri.28555
Leng, A., Shah, M., Ahmad, S. A., Premraj, L., Wildi, K., Bassi, G. L., Pardo, C. A., Choi, A., & Cho, S. (2023). Pathogenesis underlying neurological manifestations of long COVID syndrome and potential therapeutics. Cells, 12(5), 816. DOI: https://doi.org/10.3390/cells12050816
Liu, T. C., Yoo, S. M., Sim, M. S., Motwani, Y., Viswanathan, N., & Wenger, N. S. (2023). Perceived cognitive deficits in patients with symptomatic SARS-CoV-2 and their association with Post-COVID-19 condition. JAMA Network Open, 6(5), e2311974. DOI: https://doi.org/10.1001/jamanetworkopen.2023.11974
Marzbani, H., Marateb, H., & Mansourian, M. (2016). Methodological note: neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7(2), 143-58. DOI: https://doi.org/10.15412/j.bcn.03070208
Mathern, R., Senthil, P., Vu, N., & Thiyagarajan, T. (2022). Neurocognitive rehabilitation in COVID-19 patients: A clinical review. Southern Medical Journal, 115(3), 227-231. DOI: https://doi.org/10.14423/smj.0000000000001371
Miller, A. H., Haroon, E., & Felger, J. C. (2016). Therapeutic implications of brain-immune interactions: Treatment in translation. Neuropsychopharmacology, 42(1), 334-359. DOI: https://doi.org/10.1038/npp.2016.167
Mukundan, C. (2013). Computerized cognitive retraining programs for patients afflicted with traumatic brain injury and other brain disorders. In Elsevier eBooks (pp. 11-32). DOI: https://doi.org/10.1016/b978-0-12-416046-0.00002-x
Nouraeinejad, A. (2022). A proposal to apply brain injury recovery treatments for cognitive impairment in COVID-19 survivors. International Journal of Neuroscience, 134(1), 88-89. DOI: https://doi.org/10.1080/00207454.2022.2084091
Perlis, R. H., Santillana, M., Ognyanova, K., Safarpour, A., Trujillo, K. L., Simonson, M. D., Green, J., Quintana, A., Druckman, J., Baum, M. A., & Lazer, D. (2022). Prevalence and correlates of long COVID symptoms among US adults. JAMA Network Open, 5(10), e2238804. DOI: https://doi.org/10.1001/jamanetworkopen.2022.38804
Planchuelo-Gómez, Á., García-Azorín, D., Guerrero, Á. L., Rodríguez, M., Aja-Fernández, S., & De Luis-García, R. (2022). Structural brain changes in patients with persistent headache after COVID-19 resolution. Journal of Neurology, 270(1), 13-31. DOI: https://doi.org/10.1007/s00415-022-11398-z
Postol, O., & Shchadilova, I. (2022). Neurostimulating complexes of physical exercises to neutralize long COVID. Health Problems of Civilization, 16(1), 3-4. DOI: https://doi.org/10.5114/hpc.2021.110038
Quan, M., Wang, X., Gong, M., Wang, Q., Li, Y., & Jia, J. (2023). Post-COVID cognitive dysfunction: current status and research recommendations for high risk population. The Lancet Regional Health - Western Pacific, 38, 100836. DOI: https://doi.org/10.1016/j.lanwpc.2023.100836
Reiss, A. B., Greene, C., Dayaramani, C., Rauchman, S. H., Stecker, M. M., De Leon, J., & Pinkhasov, A. (2023). Long COVID, the brain, nerves, and cognitive function. Neurology International, 15(3), 821-841. DOI: https://doi.org/10.3390/neurolint15030052
Rivas-Vazquez, R. A., Rey, G., Quintana, A., & Rivas-Vazquez, A. A. (2022). Assessment and management of long COVID. Journal of Health Service Psychology, 48(1), 21-30. DOI: https://doi.org/10.1007/s42843-022-00055-8
Rodriguez-Morales, A. J., Lopez-Echeverri, M. C., Perez-Raga, M. F., Quintero-Romero, V., Valencia-Gallego, V., Galindo-Herrera, N., López-Alzate, S., Sánchez-Vinasco, J. D., Gutiérrez-Vargas, J. J., Mayta-Tristan, P., Husni, R., Moghnieh, R., Stephan, J., Faour, W., Tawil, S., Barakat, H., Chaaban, T., Megarbane, A., Rizk, Y., . . . Ulloa-Gutiérrez, R. (2023). The global challenges of the long COVID-19 in adults and children. Travel Medicine and Infectious Disease, 54, 102606. DOI: https://doi.org/10.1016/j.tmaid.2023.102606
Rountree-Harrison, D. (2022). COVID-19 and the brain: Infection mechanisms, electroencephalographic findings and clinical implications. NeuroRegulation, 9(1), 48-66. DOI: https://doi.org/10.15540/nr.9.1.48
Rudofker, E. W., Parker, H., & Cornwell, W. K. (2022). An exercise prescription as a novel management strategy for treatment of long COVID. JACC Case Reports, 4(20), 1344-1347. DOI: https://doi.org/10.1016/j.jaccas.2022.06.026
Russell, A. L. R., Hardwick, M., Jeyanantham, A., White, L. M., Deb, S., Burnside, G., Joy, H. M., Smith, C. J., Pollak, T. A., Nicholson, T. R., Davies, N. W. S., Manji, H., Easton, A., Ray, S., Zandi, M. S., Coles, J. P., Menon, D. K., Varatharaj, A., McCausland, B., . . . Galea, I. (2021). Spectrum, risk factors and outcomes of neurological and psychiatric complications of COVID-19: A UK-wide cross-sectional surveillance study. Brain Communications, 3(3), fcab168. DOI: https://doi.org/10.1093/braincomms/fcab168
Shi, W., Jiang, D., Rando, H., Khanduja, S., Lin, Z., Hazel, K., Pottanat, G., Jones, E., Xu, C., Lin, D., Yasar, S., Cho, S., & Lu, H. (2023). Blood-brain barrier breakdown in COVID-19 ICU survivors: An MRI pilot study. NeuroImmune Pharmacology and Therapeutics, 2(4), 333-338. DOI: https://doi.org/10.1515/nipt-2023-0018
Turana, Y., Nathaniel, M., Shen, R., Ali, S., & Aparasu, R. R. (2021). Citicoline and COVID-19-related cognitive and other neurologic complications. Brain Sciences, 12(1), 59. DOI: https://doi.org/10.3390/brainsci12010059
Vakani, K., Ratto, M., Sandford-James, A., Antonova, E., & Kumari, V. (2022). Cognitive trajectory of COVID-19 and long COVID in adult survivors. European Psychiatry, 65(S1), S133. DOI: https://doi.org/10.1192/j.eurpsy.2022.363
Varatharaj, A., Thomas, N., Ellul, M. A., Davies, N. W. S., Pollak, T. A., Tenorio, E. L., Sultan, M., Easton, A., Breen, G., Zandi, M., Coles, J. P., Manji, H., Salman, R. A., Menon, D. K., Nicholson, T. R., Benjamin, L. A., Carson, A., Smith, C., Turner, M. R., . . . Plant, G. (2020). Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. The Lancet Psychiatry, 7(10), 875-882. DOI: https://doi.org/10.1016/s2215-0366(20)30287-x
Warren, S., Drake, J., & Wu, C. K. (2022). Cognitive complications of COVID-19 Infection. Rhode Island Medical Journal (2013), 105(7), 27-30. Available at: http://rimed.org/rimedicaljournal/2022/09/2022-09-27-covid-warren.pdf
Xu, E., Xie, Y., & Al-Aly, Z. (2022). Long-term neurologic outcomes of COVID-19. Nature Medicine, 28(11), 2406-2415. DOI: https://doi.org/10.1038/s41591-022-02001-z
Yasir, S., Jin, Y., Razzaq, F. A., Caballero-Moreno, A., Galán-García, L., Ren, P., Valdes-Sosa, M., Rodriguez-Labrada, R., Bringas-Vega, M. L., & Valdes-Sosa, P. A. (2024). The determinants of COVID-induced brain dysfunctions after SARS-CoV-2 infection in hospitalized patients. Frontiers in Neuroscience, 17, 1249282. DOI: https://doi.org/10.3389/fnins.2023.1249282
Zhao, F., Han, Z., Wang, R., & Luo, Y. (2021). Neurological manifestations of COVID-19: Causality or coincidence? Aging and Disease, 12(1), 27. DOI: https://doi.org/10.14336/ad.2020.0917
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.