What Could We Expect When Quantum Meets Medicine?
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The convergence of quantum physics and medicine has the potential to transform healthcare in unprecedented ways. Quantum computers can process vast quantities of data with unmatched velocity, facilitating more precise diagnoses and customized treatment strategies aligned with each individual’s distinct genetic profile. Quantum sensors can identify diseases in their initial stages, facilitating preemptive measures prior to the manifestation of symptoms. Quantum encryption technology guarantees the utmost preservation of patient privacy and data security. Additionally, quantum concepts like superposition and entanglement may soon be utilized for innovative medicines that precisely target individual molecules, hence reducing side effects and enhancing efficacy. As researchers investigate the intersection of quantum mechanics and medicine, we anticipate a future in which healthcare is proactive, preventive, and genuinely individualized rather than merely reactive.
##plugins.themes.bootstrap3.article.details##
Quantum Physics, Future Medicine, Healthcare Development, Targeted Therapy, Transformations
Altintas, Z., & Tothill, I. E. (2015). Molecular biosensors: promising new tools for early detection of cancer. Nanobiosensors in Disease Diagnosis, 1. DOI: https://doi.org/10.2147/ndd.s56772
Aslam, N., Zhou, H., Urbach, E. K., Turner, M. J., Walsworth, R. L., Lukin, M. D., & Park, H. (2023). Quantum sensors for biomedical applications. Nature Reviews Physics, 5(3), 157-169. DOI: https://doi.org/10.1038/s42254-023-00558-3
Azzazy, H. M., Mansour, M. M., & Kazmierczak, S. C. (2007). From diagnostics to therapy: Prospects of quantum dots. Clinical Biochemistry, 40(13-14), 917-927. DOI: https://doi.org/10.1016/j.clinbiochem.2007.05.018
Banerjee, H., & Verma, M. (2011). Quantum dots and their potential applications in cancer detection and therapy. International Journal of Biomedical Nanoscience and Nanotechnology, 2(1), 33. DOI: https://doi.org/10.1504/ijbnn.2011.038465
Bida, M. N., Mosito, S. M., Miya, T. V., Demetriou, D., Blenman, K. R. M., & Dlamini, Z. (2023). Transformation of the Healthcare Ecosystem in the Era of Society 5.0. In Society 5.0 and Next Generation Healthcare (pp. 223-248). DOI: https://doi.org/10.1007/978-3-031-36461-7_10
Bisiani, J., Anugu, A., & Pentyala, S. (2023). It’s Time to Go Quantum in Medicine. Journal of Clinical Medicine, 12(13), 4506. DOI: https://doi.org/10.3390/jcm12134506
Chugh, V., Basu, A., Kaushik, A., & Basu, A. K. (2023). Progression in Quantum Sensing/Bio-Sensing Technologies for Healthcare. ECS Sensors Plus, 2(1), 015001. DOI: https://doi.org/10.1149/2754-2726/acc190
Delehanty, J. B., Boeneman, K., Bradburne, C. E., Robertson, K., & Medintz, I. L. (2009). Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opinion on Drug Delivery, 6(10), 1091-1112. DOI: https://doi.org/10.1517/17425240903167934
Dowling, J. P., & Milburn, G. J. (2003). Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 361(1809), 1655-1674. DOI: https://doi.org/10.1098/rsta.2003.1227
Facchin, F., Bianconi, E., Canaider, S., Basoli, V., Biava, P. M., & Ventura, C. (2018). Tissue Regeneration without Stem Cell Transplantation: Self-Healing Potential from Ancestral Chemistry and Physical Energies. Stem Cells International, 2018, 1-8. DOI: https://doi.org/10.1155/2018/7412035
Facchin, F., Canaider, S., Tassinari, R., Zannini, C., Bianconi, E., Taglioli, V., Olivi, E., Cavallini, C., Tausel, M., & Ventura, C. (2019). Physical energies to the rescue of damaged tissues. World Journal of Stem Cells, 11(6), 297-321. DOI: https://doi.org/10.4252/wjsc.v11.i6.297
Flöther, F. F. (2023). The state of quantum computing applications in health and medicine. Research Directions Quantum Technologies, 1-21. DOI: https://doi.org/10.1017/qut.2023.4
Gupta, K., Saxena, D., Rani, P., Kumar, J., Makkar, A., Singh, A. K., & Lee, C. (2024). An Intelligent Quantum Cyber-Security Framework for Healthcare Data Management. IEEE Transactions on Automation Science and Engineering, 1-12. DOI: https://doi.org/10.1109/tase.2024.3456209
Haga, A. (2024). Quantum annealing-based computed tomography using variational approach for a real-number image reconstruction. Physics in Medicine and Biology, 69(4), 04NT02. DOI: https://doi.org/10.1088/1361-6560/ad2155
Hameroff, S. R. (2004). A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. Biosystems, 77(1-3), 119-136. DOI: https://doi.org/10.1016/j.biosystems.2004.04.006
Hussain, S., Packirisamy, G., Misra, K., Tariq, M., & Sk, M. P. (2024). Editorial: Quantum dots for biological applications, volume II. Frontiers in Bioengineering and Biotechnology, 12. DOI: https://doi.org/10.3389/fbioe.2024.1389974
Iga, A. M., Robertson, J. H. P., Winslet, M. C., & Seifalian, A. M. (2007). Clinical Potential of Quantum Dots. Journal of Biomedicine and Biotechnology, 2007, 1-10. DOI: https://doi.org/10.1155/2007/76087
Jacobson, J. I. (2016). A quantum theory of disease, including cancer and aging. Integrative Molecular Medicine, 3(1). DOI: https://doi.org/10.15761/imm.1000200
Kulkarni, N. S., Guererro, Y., Gupta, N., Muth, A., & Gupta, V. (2018). Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. Journal of Drug Delivery Science and Technology, 49, 352-364. DOI: https://doi.org/10.1016/j.jddst.2018.12.010
Lewis, P. J. (n.d.). Quantum Mechanics, Interpretations of | Internet Encyclopedia of Philosophy. Internet Encyclopedia of Philosophy. Available at: https://iep.utm.edu/int-qm/
Lopez, A., Kelly, P., Dauer, K., & Vitali, E. (2022). Fermionic superfluidity: from cold atoms to neutron stars. European Journal of Physics, 43(6), 065801. DOI: https://doi.org/10.1088/1361-6404/ac8707
OpenLibrary.org. (1961). Quantum mechanics. by Albert Messiah | Open Library. Open Library. Available at: https://openlibrary.org/books/OL5843556M/Quantum_mechanics
Pal, S., Bhattacharya, M., Lee, S., & Chakraborty, C. (2023). Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics. Molecular Biotechnology, 66(2), 163-178. DOI: https://doi.org/10.1007/s12033-023-00765-4
Pericleous, P., Gazouli, M., Lyberopoulou, A., Rizos, S., Nikiteas, N., & Efstathopoulos, E. P. (2012). Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer, 131(3), 519-528. DOI: https://doi.org/10.1002/ijc.27528
Probst, C. E., Zrazhevskiy, P., Bagalkot, V., & Gao, X. (2012). Quantum dots as a platform for nanoparticle drug delivery vehicle design. Advanced Drug Delivery Reviews, 65(5), 703-718. DOI: https://doi.org/10.1016/j.addr.2012.09.036
Pulipeti, S., & Kumar, A. (2022). Secure quantum computing for healthcare sector: A short analysis. Security and Privacy, 6(5). DOI: https://doi.org/10.1002/spy2.293
Raghunandan, R., Voll, M., Osei, E., Darko, J., & Laflamme, R. (2019). A review of applications of principles of quantum physics in oncology: do quantum physics principles have any role in oncology research and applications? Journal of Radiotherapy in Practice, 18(4), 383-394. DOI: https://doi.org/10.1017/s1460396919000153
Rasool, R. U., Ahmad, H. F., Rafique, W., Qayyum, A., Qadir, J., & Anwar, Z. (2023). Quantum Computing for Healthcare: A Review. Future Internet, 15(3), 94. DOI: https://doi.org/10.3390/fi15030094
Samia, A. C. S., Chen, X., & Burda, C. (2003). Semiconductor Quantum Dots for Photodynamic Therapy. Journal of the American Chemical Society, 125(51), 15736-15737. DOI: https://doi.org/10.1021/ja0386905
Santagati, R., Aspuru-Guzik, A., Babbush, R., Degroote, M., González, L., Kyoseva, E., Moll, N., Oppel, M., Parrish, R. M., Rubin, N. C., Streif, M., Tautermann, C. S., Weiss, H., Wiebe, N., & Utschig-Utschig, C. (2024). Drug design on quantum computers. Nature Physics, 20(4), 549-557. DOI: https://doi.org/10.1038/s41567-024-02411-5
Santra, S. (2012). The Potential Clinical Impact of Quantum Dots. Nanomedicine, 7(5), 623-626. DOI: https://doi.org/10.2217/nnm.12.45
Selvarajan, S., & Mouratidis, H. (2023). A quantum trust and consultative transaction-based blockchain cybersecurity model for healthcare systems. Scientific Reports, 13(1). DOI: https://doi.org/10.1038/s41598-023-34354-x
Solanki, A., Kim, J. D., & Lee, K. (2008). Nanotechnology for Regenerative Medicine: Nanomaterials for Stem Cell Imaging. Nanomedicine, 3(4), 567-578. DOI: https://doi.org/10.2217/17435889.3.4.567
Tsonis, P. A. (2002). Regenerative biology: The emerging field of tissue repair and restoration. Differentiation, 70(8), 397-409. DOI: https://doi.org/10.1046/j.1432-0436.2002.700802.x
Wang, L., & Alexander, C. A. (2020). Quantum Technology: Advances and Trends. American Journal of Engineering and Applied Sciences, 13(2), 254-264. DOI: https://doi.org/10.3844/ajeassp.2020.254.264
Zhang, Y., He, Z., Tong, X., Garrett, D. C., Cao, R., & Wang, L. V. (2024). Quantum imaging of biological organisms through spatial and polarization entanglement. Science Advances, 10(10). DOI: https://doi.org/10.1126/sciadv.adk1495
Zhao, M., & Zhu, B. (2016). The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Research Letters, 11(1). DOI: https://doi.org/10.1186/s11671-016-1394-9
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.