##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 27, 2024

Lars Robsahm  

Abstract

The convergence of quantum physics and medicine has the potential to transform healthcare in unprecedented ways. Quantum computers can process vast quantities of data with unmatched velocity, facilitating more precise diagnoses and customized treatment strategies aligned with each individual’s distinct genetic profile. Quantum sensors can identify diseases in their initial stages, facilitating preemptive measures prior to the manifestation of symptoms. Quantum encryption technology guarantees the utmost preservation of patient privacy and data security. Additionally, quantum concepts like superposition and entanglement may soon be utilized for innovative medicines that precisely target individual molecules, hence reducing side effects and enhancing efficacy. As researchers investigate the intersection of quantum mechanics and medicine, we anticipate a future in which healthcare is proactive, preventive, and genuinely individualized rather than merely reactive.

##plugins.themes.bootstrap3.article.details##

Keywords

Quantum Physics, Future Medicine, Healthcare Development, Targeted Therapy, Transformations

References
Abdellatif, A. A., Younis, M. A., Alsharidah, M., Rugaie, O. A., & Tawfeek, H. M. (2022). Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. International Journal of Nanomedicine, 17, 1951-1970. DOI: https://doi.org/10.2147/ijn.s357980

Altintas, Z., & Tothill, I. E. (2015). Molecular biosensors: promising new tools for early detection of cancer. Nanobiosensors in Disease Diagnosis, 1. DOI: https://doi.org/10.2147/ndd.s56772

Aslam, N., Zhou, H., Urbach, E. K., Turner, M. J., Walsworth, R. L., Lukin, M. D., & Park, H. (2023). Quantum sensors for biomedical applications. Nature Reviews Physics, 5(3), 157-169. DOI: https://doi.org/10.1038/s42254-023-00558-3

Azzazy, H. M., Mansour, M. M., & Kazmierczak, S. C. (2007). From diagnostics to therapy: Prospects of quantum dots. Clinical Biochemistry, 40(13-14), 917-927. DOI: https://doi.org/10.1016/j.clinbiochem.2007.05.018

Banerjee, H., & Verma, M. (2011). Quantum dots and their potential applications in cancer detection and therapy. International Journal of Biomedical Nanoscience and Nanotechnology, 2(1), 33. DOI: https://doi.org/10.1504/ijbnn.2011.038465

Bida, M. N., Mosito, S. M., Miya, T. V., Demetriou, D., Blenman, K. R. M., & Dlamini, Z. (2023). Transformation of the Healthcare Ecosystem in the Era of Society 5.0. In Society 5.0 and Next Generation Healthcare (pp. 223-248). DOI: https://doi.org/10.1007/978-3-031-36461-7_10

Bisiani, J., Anugu, A., & Pentyala, S. (2023). It’s Time to Go Quantum in Medicine. Journal of Clinical Medicine, 12(13), 4506. DOI: https://doi.org/10.3390/jcm12134506

Chugh, V., Basu, A., Kaushik, A., & Basu, A. K. (2023). Progression in Quantum Sensing/Bio-Sensing Technologies for Healthcare. ECS Sensors Plus, 2(1), 015001. DOI: https://doi.org/10.1149/2754-2726/acc190

Delehanty, J. B., Boeneman, K., Bradburne, C. E., Robertson, K., & Medintz, I. L. (2009). Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opinion on Drug Delivery, 6(10), 1091-1112. DOI: https://doi.org/10.1517/17425240903167934

Dowling, J. P., & Milburn, G. J. (2003). Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 361(1809), 1655-1674. DOI: https://doi.org/10.1098/rsta.2003.1227

Facchin, F., Bianconi, E., Canaider, S., Basoli, V., Biava, P. M., & Ventura, C. (2018). Tissue Regeneration without Stem Cell Transplantation: Self-Healing Potential from Ancestral Chemistry and Physical Energies. Stem Cells International, 2018, 1-8. DOI: https://doi.org/10.1155/2018/7412035

Facchin, F., Canaider, S., Tassinari, R., Zannini, C., Bianconi, E., Taglioli, V., Olivi, E., Cavallini, C., Tausel, M., & Ventura, C. (2019). Physical energies to the rescue of damaged tissues. World Journal of Stem Cells, 11(6), 297-321. DOI: https://doi.org/10.4252/wjsc.v11.i6.297

Flöther, F. F. (2023). The state of quantum computing applications in health and medicine. Research Directions Quantum Technologies, 1-21. DOI: https://doi.org/10.1017/qut.2023.4

Gupta, K., Saxena, D., Rani, P., Kumar, J., Makkar, A., Singh, A. K., & Lee, C. (2024). An Intelligent Quantum Cyber-Security Framework for Healthcare Data Management. IEEE Transactions on Automation Science and Engineering, 1-12. DOI: https://doi.org/10.1109/tase.2024.3456209

Haga, A. (2024). Quantum annealing-based computed tomography using variational approach for a real-number image reconstruction. Physics in Medicine and Biology, 69(4), 04NT02. DOI: https://doi.org/10.1088/1361-6560/ad2155

Hameroff, S. R. (2004). A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. Biosystems, 77(1-3), 119-136. DOI: https://doi.org/10.1016/j.biosystems.2004.04.006

Hussain, S., Packirisamy, G., Misra, K., Tariq, M., & Sk, M. P. (2024). Editorial: Quantum dots for biological applications, volume II. Frontiers in Bioengineering and Biotechnology, 12. DOI: https://doi.org/10.3389/fbioe.2024.1389974

Iga, A. M., Robertson, J. H. P., Winslet, M. C., & Seifalian, A. M. (2007). Clinical Potential of Quantum Dots. Journal of Biomedicine and Biotechnology, 2007, 1-10. DOI: https://doi.org/10.1155/2007/76087

Jacobson, J. I. (2016). A quantum theory of disease, including cancer and aging. Integrative Molecular Medicine, 3(1). DOI: https://doi.org/10.15761/imm.1000200

Kulkarni, N. S., Guererro, Y., Gupta, N., Muth, A., & Gupta, V. (2018). Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. Journal of Drug Delivery Science and Technology, 49, 352-364. DOI: https://doi.org/10.1016/j.jddst.2018.12.010

Lewis, P. J. (n.d.). Quantum Mechanics, Interpretations of | Internet Encyclopedia of Philosophy. Internet Encyclopedia of Philosophy. Available at: https://iep.utm.edu/int-qm/

Lopez, A., Kelly, P., Dauer, K., & Vitali, E. (2022). Fermionic superfluidity: from cold atoms to neutron stars. European Journal of Physics, 43(6), 065801. DOI: https://doi.org/10.1088/1361-6404/ac8707

OpenLibrary.org. (1961). Quantum mechanics. by Albert Messiah | Open Library. Open Library. Available at: https://openlibrary.org/books/OL5843556M/Quantum_mechanics

Pal, S., Bhattacharya, M., Lee, S., & Chakraborty, C. (2023). Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics. Molecular Biotechnology, 66(2), 163-178. DOI: https://doi.org/10.1007/s12033-023-00765-4

Pericleous, P., Gazouli, M., Lyberopoulou, A., Rizos, S., Nikiteas, N., & Efstathopoulos, E. P. (2012). Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer, 131(3), 519-528. DOI: https://doi.org/10.1002/ijc.27528

Probst, C. E., Zrazhevskiy, P., Bagalkot, V., & Gao, X. (2012). Quantum dots as a platform for nanoparticle drug delivery vehicle design. Advanced Drug Delivery Reviews, 65(5), 703-718. DOI: https://doi.org/10.1016/j.addr.2012.09.036

Pulipeti, S., & Kumar, A. (2022). Secure quantum computing for healthcare sector: A short analysis. Security and Privacy, 6(5). DOI: https://doi.org/10.1002/spy2.293

Raghunandan, R., Voll, M., Osei, E., Darko, J., & Laflamme, R. (2019). A review of applications of principles of quantum physics in oncology: do quantum physics principles have any role in oncology research and applications? Journal of Radiotherapy in Practice, 18(4), 383-394. DOI: https://doi.org/10.1017/s1460396919000153

Rasool, R. U., Ahmad, H. F., Rafique, W., Qayyum, A., Qadir, J., & Anwar, Z. (2023). Quantum Computing for Healthcare: A Review. Future Internet, 15(3), 94. DOI: https://doi.org/10.3390/fi15030094

Samia, A. C. S., Chen, X., & Burda, C. (2003). Semiconductor Quantum Dots for Photodynamic Therapy. Journal of the American Chemical Society, 125(51), 15736-15737. DOI: https://doi.org/10.1021/ja0386905

Santagati, R., Aspuru-Guzik, A., Babbush, R., Degroote, M., González, L., Kyoseva, E., Moll, N., Oppel, M., Parrish, R. M., Rubin, N. C., Streif, M., Tautermann, C. S., Weiss, H., Wiebe, N., & Utschig-Utschig, C. (2024). Drug design on quantum computers. Nature Physics, 20(4), 549-557. DOI: https://doi.org/10.1038/s41567-024-02411-5

Santra, S. (2012). The Potential Clinical Impact of Quantum Dots. Nanomedicine, 7(5), 623-626. DOI: https://doi.org/10.2217/nnm.12.45
Selvarajan, S., & Mouratidis, H. (2023). A quantum trust and consultative transaction-based blockchain cybersecurity model for healthcare systems. Scientific Reports, 13(1). DOI: https://doi.org/10.1038/s41598-023-34354-x

Solanki, A., Kim, J. D., & Lee, K. (2008). Nanotechnology for Regenerative Medicine: Nanomaterials for Stem Cell Imaging. Nanomedicine, 3(4), 567-578. DOI: https://doi.org/10.2217/17435889.3.4.567

Tsonis, P. A. (2002). Regenerative biology: The emerging field of tissue repair and restoration. Differentiation, 70(8), 397-409. DOI: https://doi.org/10.1046/j.1432-0436.2002.700802.x

Wang, L., & Alexander, C. A. (2020). Quantum Technology: Advances and Trends. American Journal of Engineering and Applied Sciences, 13(2), 254-264. DOI: https://doi.org/10.3844/ajeassp.2020.254.264

Zhang, Y., He, Z., Tong, X., Garrett, D. C., Cao, R., & Wang, L. V. (2024). Quantum imaging of biological organisms through spatial and polarization entanglement. Science Advances, 10(10). DOI: https://doi.org/10.1126/sciadv.adk1495

Zhao, M., & Zhu, B. (2016). The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Research Letters, 11(1). DOI: https://doi.org/10.1186/s11671-016-1394-9
How to Cite
Robsahm, L. (2024). What Could We Expect When Quantum Meets Medicine?. Science Insights, 45(5), 1611–1614. https://doi.org/10.15354/si.24.co236
Section
Commentary