Global Mean Surface Temperature: What Can We Learn from the Trajectory over a Millions-year Span?
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Global mean surface temperature serves as a crucial metric in understanding the Earth’s climate dynamics, providing insights into long-term climate trends and variability. Over the course of a million years, the trajectory of global temperatures has been shaped by a multitude of factors, including natural climatic cycles, human activities, and external influences. By examining the historical trends and drivers influencing global mean surface temperature, researchers can gain valuable insights into the past, present, and future climate scenarios. This article delves into the intricate interplay of these factors and explores the lessons we can learn from studying the temperature trajectory over a million-year span.
##plugins.themes.bootstrap3.article.details##
Global Mean Surface Temperature, Climate Dynamics, Influencing Factors, Historic Trajectory
No funding source declared.
Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., Talley, L. D., & Wallace, J. M. (2003). Abrupt Climate Change. Science, 299(5615), 2005-2010. DOI: https://doi.org/10.1126/science.1081056
Anandhi, A., & Bentley, C. (2018). Predicted 21st century climate variability in southeastern U.S. using downscaled CMIP5 and meta-analysis. Catena, 170, 409-420. DOI: https://doi.org/10.1016/j.catena.2018.06.005
Andrews, T., Gregory, J. M., Paynter, D., Silvers, L. G., Zhou, C., Mauritsen, T., Webb, M. J., Armour, K. C., Forster, P. M., & Titchner, H. (2018). Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity. Geophysical Research Letters, 45(16), 8490-8499. DOI: https://doi.org/10.1029/2018gl078887
Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., & Mirin, A. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16), 6550-6555. DOI: https://doi.org/10.1073/pnas.0608998104
Barboza, L., Li, B., Tingley, M. P., & Viens, F. G. (2014). Reconstructing past temperatures from natural proxies and estimated climate forcings using short- and long-memory models. The Annals of Applied Statistics, 8(4). DOI: https://doi.org/10.1214/14-aoas785
Baswald, K., Lencinas, J. D., & Loguercio, G. (2002). Carbon Reservoirs in Temperate South American Nothofagus Forests. The Scientific World JOURNAL, 2, 53-75. DOI: https://doi.org/10.1100/tsw.2002.75
Bindoff, N. L., Stott, P. a. A., Achutarao, K. M., Allen, M. R. R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Sebbari, R., Zhang, X., Aldrin, M., Sarojini, B. B., Beer, J., Boucher, O., Braconnot, P., Browne, O., Chang, P., . . . Zhang, R. (2014). Detection and Attribution of Climate Change: from Global to Regional. In Cambridge University Press eBooks (pp. 867-952). DOI: https://doi.org/10.1017/cbo9781107415324.022
Bowen, G. J., Maibauer, B. J., Kraus, M. J., Röhl, U., Westerhold, T., Steimke, A., Gingerich, P. D., Wing, S. L., & Clyde, W. C. (2014). Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene thermal maximum. Nature Geoscience, 8(1), 44-47. DOI: https://doi.org/10.1038/ngeo2316
Bunde, A., Ludescher, J., & Schellnhuber, H. J. (2021). How to determine the statistical significance of trends in seasonal records: application to Antarctic temperatures. Climate Dynamics, 58(5-6), 1349-1361. DOI: https://doi.org/10.1007/s00382-021-05974-8
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., & Jin, F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111-116. DOI: https://doi.org/10.1038/nclimate2100
Cai, W., Wu, L., Lengaigne, M., Li, T., McGregor, S., Kug, J., Yu, J., Stuecker, M. F., Santoso, A., Li, X., Ham, Y., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside, N., . . . Chang, P. (2019). Pantropical climate interactions. Science, 363(6430). DOI: https://doi.org/10.1126/science.aav4236
Canadell, P., Lequre, C., Raupach, M., Ciais, P., Conway, T., Field, C., Houghton, S., & Marland, G. (2009). Global carbon sources and sinks: 2007 update. IOP Conference Series Earth and Environmental Science, 6(8), 082001. DOI: https://doi.org/10.1088/1755-1307/6/8/082001
Carraro, C. (2016). Climate change: scenarios, impacts, policy, and development opportunities. Agricultural Economics, 47(S1), 149-157. DOI: https://doi.org/10.1111/agec.12306
Chapter 16: El Niño-Southern Oscillation. (2013). In Society for Industrial and Applied Mathematics eBooks (pp. 193-211). DOI: https://doi.org/10.1137/1.9781611972610.ch16
Chu, M., Guzman, J. A., Garbrecht, J., Schneider, J., Starks, P., Steiner, J. L., & Moriasi, D. (2015). Long-term Changes in the Pattern of Rainfall Events: Implications in the Context of Climate Change Scenarios. In ASABE 1st Climate Change Symposium: Adaptation and Mitigation Conference Proceedings (pp. 1-3). ASABE. DOI: https://doi.org/10.13031/cc.20152141629
Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P., & Bartlein, P. J. (2024). Global and regional temperature change over the past 4.5 million years. Science, 383(6685), 884-890. DOI: https://doi.org/10.1126/science.adi1908
Clarke, G., Leverington, D., Teller, J., & Dyke, A. (2003). Superlakes, Megafloods, and Abrupt Climate Change. Science, 301(5635), 922-923. DOI: https://doi.org/10.1126/science.1085921
CLIMAP Project Members. (1976). The Surface of the Ice-Age Earth. Science, 191(4232), 1131-1137. DOI: https://doi.org/10.1126/science.191.4232.1131
Cohen, S., & Stanhill, G. (2015). Widespread Surface Solar Radiation Changes and Their Effects. In Elsevier eBooks (pp. 491-511). DOI: https://doi.org/10.1016/b978-0-444-63524-2.00029-4
Collett, T., Bahk, J., Baker, R., Boswell, R., Divins, D., Frye, M., Goldberg, D., Husebø, J., Koh, C., Malone, M., Morell, M., Myers, G., Shipp, C., & Torres, M. (2014). Methane Hydrates in Nature—Current Knowledge and Challenges. Journal of Chemical & Engineering Data, 60(2), 319-329. DOI: https://doi.org/10.1021/je500604h
Collins, M., Chandler, R. E., Cox, P. M., Huthnance, J. M., Rougier, J., & Stephenson, D. B. (2012). Quantifying future climate change. Nature Climate Change, 2(6), 403-409. DOI: https://doi.org/10.1038/nclimate1414
Cooke, A. (2012). Ice Ages and Long-Term Cycles. In Astronomers’ universe (pp. 235-250). DOI: https://doi.org/10.1007/978-1-4614-4608-8_11
Cramer, B. S., & Kent, D. V. (2005). Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger. Palaeogeography Palaeoclimatology Palaeoecology, 224(1-3), 144-166. DOI: https://doi.org/10.1016/j.palaeo.2005.03.040
Deng, X., Zhao, C., Lin, Y., Zhang, T., Qu, Y., Zhang, F., Wang, Z., & Wu, F. (2014). Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective. Energies, 7(4), 2720-2739. DOI: https://doi.org/10.3390/en7042720
Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M. M., Dickinson, R. E. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Da Silva Dias, P. L., Wofsy, S. C. C., Zhang, X., Arora, V., Baker, D., Bonan, G., Bousquet, P., . . . Zhou, L. (2007). Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change the Physical Science Basis (pp. 499-587). Cambridge University Press. Available at: https://hal.science/hal-03375731
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M., & Putnam, A. E. (2010). The Last Glacial Termination. Science, 328(5986), 1652-1656. DOI: https://doi.org/10.1126/science.1184119
Dobrovolskis, A. R. (2009). Insolation patterns on synchronous exoplanets with obliquity. Icarus, 204(1), 1-10. DOI: https://doi.org/10.1016/j.icarus.2009.06.007
Dobrovolskis, A. R. (2014). Insolation patterns on eccentric exoplanets. Icarus, 250, 395-399. DOI: https://doi.org/10.1016/j.icarus.2014.12.017
Döös, K., Nilsson, J., Nycander, J., Brodeau, L., & Ballarotta, M. (2012). The World Ocean Thermohaline Circulation*. Journal of Physical Oceanography, 42(9), 1445-1460. DOI: https://doi.org/10.1175/jpo-d-11-0163.1
Dowling, T. E., & Showman, A. P. (2007). Earth as a Planet: Atmosphere and Oceans. In Elsevier eBooks (pp. 169-188). DOI: https://doi.org/10.1016/b978-012088589-3/50013-x
Dunstan, P. K., Foster, S. D., King, E., Risbey, J., O’Kane, T. J., Monselesan, D., Hobday, A. J., Hartog, J. R., & Thompson, P. A. (2018). Global patterns of change and variation in sea surface temperature and chlorophyll a. Scientific Reports, 8(1). DOI: https://doi.org/10.1038/s41598-018-33057-y
Ebi, K. L., Hallegatte, S., Kram, T., Arnell, N. W., Carter, T. R., Edmonds, J., Kriegler, E., Mathur, R., O’Neill, B. C., Riahi, K., Winkler, H., Van Vuuren, D. P., & Zwickel, T. (2013). A new scenario framework for climate change research: background, process, and future directions. Climatic Change, 122(3), 363-372. DOI: https://doi.org/10.1007/s10584-013-0912-3
Ehlers, J., & Gibbard, P. L. (2006). The extent and chronology of Cenozoic Global Glaciation. Quaternary International, 164-165, 6-20. DOI: https://doi.org/10.1016/j.quaint.2006.10.008
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., & Piotrowski, A. M. (2012). Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition. Science, 337(6095), 704-709. DOI: https://doi.org/10.1126/science.1221294
Fahey, D., Doherty, S., Hibbard, K., Romanou, A., & Taylor, P. (2017). Physical drivers of climate change. In Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program. U.S. Global Change Research Program. Available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1572&context=usdeptcommercepub
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore, B., III, Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., & Steffen, W. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 290(5490), 291-296. DOI: https://doi.org/10.1126/science.290.5490.291
Ferrari, R., & Ferreira, D. (2011). What processes drive the ocean heat transport? Ocean Modelling, 38(3-4), 171-186. DOI: https://doi.org/10.1016/j.ocemod.2011.02.013
Ferrusquía-Villafranca, I., Arroyo-Cabrales, J., Johnson, E., Ruiz-González, J., Martínez-Hernández, E., Gama-Castro, J., De Anda-Hurtado, P., & Polaco, O. J. (2017). Quaternary Mammals, People, and Climate Change: A View from Southern North America. In Vertebrate paleobiology and paleoanthroplogy series/Vertebrate paleobiology and paleoanthropology series (pp. 27-67). DOI: https://doi.org/10.1007/978-94-024-1106-5_3
Folberth, G. A., Butler, T. M., Collins, W. J., & Rumbold, S. T. (2014). Megacities and climate change - A brief overview. Environmental Pollution, 203, 235-242. DOI: https://doi.org/10.1016/j.envpol.2014.09.004
Foster, G. L., Hull, P., Lunt, D. J., & Zachos, J. C. (2018). Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 376(2130), 20170086. DOI: https://doi.org/10.1098/rsta.2017.0086
Friedrich, T., & Timmermann, A. (2019). Using Late Pleistocene sea surface temperature reconstructions to constrain future greenhouse warming. Earth and Planetary Science Letters, 530, 115911. DOI: https://doi.org/10.1016/j.epsl.2019.115911
Frieling, J., Svensen, H. H., Planke, S., Cramwinckel, M. J., Selnes, H., & Sluijs, A. (2016). Thermogenic methane release as a cause for the long duration of the PETM. Proceedings of the National Academy of Sciences, 113(43), 12059-12064. DOI: https://doi.org/10.1073/pnas.1603348113
Fu, M., Abbot, D. S., Koeberl, C., & Fedorov, A. (2024). Impact-induced initiation of Snowball Earth: A model study. Science Advances, 10(6). DOI: https://doi.org/10.1126/sciadv.adk5489
Garuma, G. F., Blanchet, J., Girard, É., & Leduc, M. (2018). Urban surface effects on current and future climate. Urban Climate, 24, 121-138. DOI: https://doi.org/10.1016/j.uclim.2018.02.003
Gerlach, K. a. M. M. P. D. R. K. T. M. (1998). Impact of Volcanic Gases. Available at: https://pubs.usgs.gov/of/1997/of97-262/of97-262.html
Ghimire, B., Williams, C. A., Masek, J., Gao, F., Wang, Z., Schaaf, C., & He, T. (2014). Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis. Geophysical Research Letters, 41(24), 9087-9096. DOI: https://doi.org/10.1002/2014gl061671
Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., & Wilson, P. A. (2006). Nannoplankton Extinction and Origination Across the Paleocene-Eocene Thermal Maximum. Science, 314(5806), 1770-1773. DOI: https://doi.org/10.1126/science.1133902
Gilruth, P., Duguma, L. A., Minang, P. A., Bah, A., Jaiteh, M. S., Mwangi, S., & Ahmad, M. (2021). A Framework for Monitoring Ecosystems-Based Adaptation to Climate Change: Experience from The Gambia. Sustainability, 13(19), 10959. DOI: https://doi.org/10.3390/su131910959
Grotjahn, R. (2014). General Circulation of the Atmosphere | Mean Characteristics. In Elsevier eBooks (pp. 73-89). DOI: https://doi.org/10.1016/b978-0-12-382225-3.00154-7
Guan, B., & Lei, H. (2009). Magnitude of Dissociation of Methane Hydrate Reservoir Associate with Climate Change. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (Vol. 53, pp. 1-6). IEEE. DOI: https://doi.org/10.1109/icbbe.2009.5163024
Gurjar, B. R., Ojha, C. S. P., Surampalli, R. Y., Walvekar, P. P., & Tyagi, V. (2013). Greenhouse Gas Emissions and Climate Change: An Overview. In American Society of Civil Engineers eBooks (pp. 9-25). DOI: https://doi.org/10.1061/9780784412718.ch02
Hasyimi, V., & Azizalrahman, H. (2018). A Strategy-Based Model for Low Carbon Cities. Sustainability, 10(12), 4828. DOI: https://doi.org/10.3390/su10124828
Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 194(4270), 1121-1132. DOI: https://doi.org/10.1126/science.194.4270.1121
Hibbard, K., Hoffman, F., Huntzinger, D., & West, T. (2017). Changes in land cover and terrestrial biogeochemistry. In Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program. U.S. Global Change Research Program. Available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1580&context=usdeptcommercepub
Higgins, J. A., & Schrag, D. P. (2006). Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 245(3-4), 523-537. DOI: https://doi.org/10.1016/j.epsl.2006.03.009
Hinnov, L. A. (2005). Earth’s orbital parameters and cycle stratigraphy. In Cambridge University Press eBooks (pp. 55-62). DOI: https://doi.org/10.1017/cbo9780511536045.005
Holbourn, A., Kuhnt, W., Kulhanek, D. K., Mountain, G., Rosenthal, Y., Sagawa, T., Lübbers, J., & Andersen, N. (2024). Re-organization of Pacific overturning circulation across the Miocene Climate Optimum. Nature Communications, 15(1). DOI: https://doi.org/10.1038/s41467-024-52516-x
Houghton, R. (2013). The Contemporary Carbon Cycle. In Elsevier eBooks (pp. 399-435). DOI: https://doi.org/10.1016/b978-0-08-095975-7.00810-x
Hulme, M., Mitchell, J., Ingram, W., Lowe, J., Johns, T., New, M., & Viner, D. (1999). Climate change scenarios for global impacts studies. Global Environmental Change, 9, S3-S19. DOI: https://doi.org/10.1016/s0959-3780(99)00015-1
Hwang, Y., Xie, S., Chen, P., Tseng, H., & Deser, C. (2024). Contribution of anthropogenic aerosols to persistent La Niña-like conditions in the early 21st century. Proceedings of the National Academy of Sciences, 121(5). DOI: https://doi.org/10.1073/pnas.2315124121
Ismail, N. H. M., Nayan, S., Kadir, N., & Yusoff, M. Y. M. (2020). Carbon Dioxide (CO2) Emission, Energy Consumption and Economic Growth: Evidence from Selected Southeast Asia Countries. Journal of Emerging Economies and Islamic Research, 8(2), 1. DOI: https://doi.org/10.24191/jeeir.v8i2.8937
Jones, P. D. (2002). Changes in climate and variability over the last 1000 years. In International geophysics/International geophysics series (pp. 133-142). DOI: https://doi.org/10.1016/s0074-6142(02)80162-0
Jones, P. D., & Mann, M. E. (2004). Climate over past millennia. Reviews of Geophysics, 42(2). DOI: https://doi.org/10.1029/2003rg000143
Jones, T. D., Ridgwell, A., Lunt, D. J., Maslin, M. A., Schmidt, D. N., & Valdes, P. J. (2010). A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 368(1919), 2395-2415. DOI: https://doi.org/10.1098/rsta.2010.0053
Judd, E. J., Tierney, J. E., Lunt, D. J., Montañez, I. P., Huber, B. T., Wing, S. L., & Valdes, P. J. (2024). A 485-million-year history of Earth’s surface temperature. Science, 385(6715). DOI: https://doi.org/10.1126/science.adk3705
Karl, T. R., & Trenberth, K. E. (2003). Modern Global Climate Change. Science, 302(5651), 1719-1723. DOI: https://doi.org/10.1126/science.1090228
Katz, M. E., Pak, D. K., Dickens, G. R., & Miller, K. G. (1999). The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum. Science, 286(5444), 1531-1533. DOI: https://doi.org/10.1126/science.286.5444.1531
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P. S., Heiri, O., & Davis, B. (2020). Holocene global mean surface temperature, a multi-method reconstruction approach. Scientific Data, 7(1). DOI: https://doi.org/10.1038/s41597-020-0530-7
Keeling, C. D. (1997). Climate change and carbon dioxide: An introduction. Proceedings of the National Academy of Sciences, 94(16), 8273-8274. DOI: https://doi.org/10.1073/pnas.94.16.8273
Kemp, L., Xu, C., Depledge, J., Ebi, K. L., Gibbins, G., Kohler, T. A., Rockström, J., Scheffer, M., Schellnhuber, H. J., Steffen, W., & Lenton, T. M. (2022). Climate Endgame: Exploring catastrophic climate change scenarios. Proceedings of the National Academy of Sciences, 119(34). DOI: https://doi.org/10.1073/pnas.2108146119
King, K. E., Cook, E. R., Anchukaitis, K. J., Cook, B. I., Smerdon, J. E., Seager, R., Harley, G. L., & Spei, B. (2024). Increasing prevalence of hot drought across western North America since the 16th century. Science Advances, 10(4). DOI: https://doi.org/10.1126/sciadv.adj4289
Kohyama, T., Hartmann, D. L., & Battisti, D. S. (2017). La Niña-like Mean-State Response to Global Warming and Potential Oceanic Roles. Journal of Climate, 30(11), 4207-4225. DOI: https://doi.org/10.1175/jcli-d-16-0441.1
Kopp, G. (2016). Earth’s Incoming Energy: The Total Solar Irradiance. In Elsevier eBooks (pp. 32-66). DOI: https://doi.org/10.1016/b978-0-12-409548-9.10366-5
Kosaka, Y., & Xie, S. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403-407. DOI: https://doi.org/10.1038/nature12534
Kostadinov, T. S., & Gilb, R. (2014). Earth Orbit v2.1: a 3-D visualization and analysis model of Earth’s orbit, Milankovitch cycles and insolation. Geoscientific Model Development, 7(3), 1051-1068. DOI: https://doi.org/10.5194/gmd-7-1051-2014
Kullberg, A. T., & Feeley, K. J. (2023). Urban Heat Islands and What They Can Teach Us About Climate Change. Frontiers for Young Minds, 11, 943515. DOI: https://doi.org/10.3389/frym.2023.943515
Latif, M., & Keenlyside, N. S. (2008). El Niño/Southern Oscillation response to global warming. Proceedings of the National Academy of Sciences, 106(49), 20578-20583. DOI: https://doi.org/10.1073/pnas.0710860105
Lausier, A. M., & Jain, S. (2018). Overlooked Trends in Observed Global Annual Precipitation Reveal Underestimated Risks. Scientific Reports, 8(1). DOI: https://doi.org/10.1038/s41598-018-34993-5
Lawrence, D. J., Runyon, A. N., Gross, J. E., Schuurman, G. W., & Miller, B. W. (2021). Divergent, plausible, and relevant climate futures for near- and long-term resource planning. Climatic Change, 167(3-4), 38. DOI: https://doi.org/10.1007/s10584-021-03169-y
Li, B., Nychka, D. W., & Ammann, C. M. (2010). The Value of Multiproxy Reconstruction of Past Climate. Journal of the American Statistical Association, 105(491), 883-895. DOI: https://doi.org/10.1198/jasa.2010.ap09379
Linsenmeier, M., Pascale, S., & Lucarini, V. (2014a). Habitability of Earth-like planets with high obliquity and eccentric orbits: results from a general circulation model. NASA/ADS. Available at: https://ui.adsabs.harvard.edu/abs/2014EGUGA..1615068L/abstract
Linsenmeier, M., Pascale, S., & Lucarini, V. (2014b). Climate of Earth-like planets with high obliquity and eccentric orbits: Implications for habitability conditions. Planetary and Space Science, 105, 43-59. DOI: https://doi.org/10.1016/j.pss.2014.11.003
Liu, F., Song, F., & Luo, Y. (2024). Human-induced intensified seasonal cycle of sea surface temperature. Nature Communications, 15(1). DOI: https://doi.org/10.1038/s41467-024-48381-3
Liu, J., Sample, D., & Thomas, W. (2015). Analysis on the Variation of Precipitation-Dry Period Frequency Pattern of the Continental United States. In ASABE 1st Climate Change Symposium: Adaptation and Mitigation Conference Proceedings (pp. 1-3). American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/cc.20152093305
Loeb, N. G., Wang, H., Allan, R. P., Andrews, T., Armour, K., Cole, J. N. S., Dufresne, J., Forster, P., Gettelman, A., Guo, H., Mauritsen, T., Ming, Y., Paynter, D., Proistosescu, C., Stuecker, M. F., Willén, U., & Wyser, K. (2020). New Generation of Climate Models Track Recent Unprecedented Changes in Earth’s Radiation Budget Observed by CERES. Geophysical Research Letters, 47(5). DOI: https://doi.org/10.1029/2019gl086705
Lourens, L. J., & Tuenter, E. (2009). The Role of Variations of the Earth’s Orbital Characteristics in Climate Change. In Elsevier eBooks (pp. 103-123). DOI: https://doi.org/10.1016/b978-0-444-53301-2.00005-1
Lunt, D. J., Elderfield, H., Pancost, R., Ridgwell, A., Foster, G. L., Haywood, A., Kiehl, J., Sagoo, N., Shields, C., Stone, E. J., & Valdes, P. (2013). Warm climates of the past—a lesson for the future? Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 371(2001), 20130146. DOI: https://doi.org/10.1098/rsta.2013.0146
Mann, M. E. (2002). The Value of Multiple Proxies. Science, 297(5586), 1481-1482. DOI: https://doi.org/10.1126/science.1074318
Mann, M. E. (2006). Climate Over the Past Two Millennia. Annual Review of Earth and Planetary Sciences, 35(1), 111-136. DOI: https://doi.org/10.1146/annurev.earth.35.031306.140042
Mann, M. E., Bradley, R. S., & Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392(6678), 779-787. DOI: https://doi.org/10.1038/33859
Mann, M. E., Gille, E., Overpeck, J., Gross, W., Bradley, R. S., Keimig, F. T., & Hughes, M. K. (2000). Global Temperature Patterns in Past Centuries: An Interactive Presentation. Earth Interactions, 4(4), 1. Available at:
https://journals.ametsoc.org/view/journals/eint/4/4/1087-3562_2000_004_0001_gtpipc_2.3.co_2.xml
Mann, M. E., & Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters, 30(15). DOI: https://doi.org/10.1029/2003gl017814
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., & Ni, F. (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105(36), 13252-13257. DOI: https://doi.org/10.1073/pnas.0805721105
Marsh, G. E. (2020). Irradiance Variations due to Orbital and Solar Inertial Motion: The Effect on Earth’s Surface Temperature. arXiv (Cornell University). DOI: https://doi.org/10.48550/arxiv.2003.01374
Maslov, L. A. (2014). Self‐organization of the Earth’s climate system versus Milankovitch‐Berger astronomical cycles. Journal of Advances in Modeling Earth Systems, 6(3), 650-657. DOI: https://doi.org/10.1002/2014ms000312
Mastrandrea, M. D., & Schneider, S. H. (2008). Resource Letter GW-2: Global Warming. American Journal of Physics, 76(7), 608-614. DOI: https://doi.org/10.1119/1.2894511
McCarthy, G. D., Joyce, T. M., & Josey, S. A. (2018). Gulf Stream Variability in the Context of Quasi‐Decadal and Multidecadal Atlantic Climate Variability. Geophysical Research Letters, 45(20). DOI: https://doi.org/10.1029/2018gl079336
McGee, K. A., Doukas, M. P., Kessler, R., & Gerlach, T. M. (1997). Impact of Volcanic Gases. USGS. Available at: https://pubs.usgs.gov/of/1997/of97-262/of97-262.html
McGehee, R., & Lehman, C. (2012). A Paleoclimate Model of Ice-Albedo Feedback Forced by Variations in Earth’s Orbit. SIAM Journal on Applied Dynamical Systems, 11(2), 684-707. DOI: https://doi.org/10.1137/10079879x
McInerney, F. A., & Wing, S. L. (2011). The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annual Review of Earth and Planetary Sciences, 39(1), 489-516. DOI: https://doi.org/10.1146/annurev-earth-040610-133431
McManus, J. F. (2004). A great grand-daddy of ice cores. Nature, 429(6992), 611-612. DOI: https://doi.org/10.1038/429611a
McMichael, A. J. (2012). Insights from past millennia into climatic impacts on human health and survival. Proceedings of the National Academy of Sciences, 109(13), 4730-4737. DOI: https://doi.org/10.1073/pnas.1120177109
Miles, G. M., Grainger, R. G., & Highwood, E. J. (2004). The significance of volcanic eruption strength and frequency for climate. Quarterly Journal of the Royal Meteorological Society, 130(602), 2361-2376. DOI: https://doi.org/10.1256/qj.03.60
Milliman, J. D., & Emery, K. O. (1968). Sea Levels during the Past 35,000 Years. Science, 162(3858), 1121-1123. DOI: https://doi.org/10.1126/science.162.3858.1121
Mills, B. J., Krause, A. J., Scotese, C. R., Hill, D. J., Shields, G. A., & Lenton, T. M. (2018). Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Research, 67, 172-186. DOI: https://doi.org/10.1016/j.gr.2018.12.001
Muller, R. A., & MacDonald, G. J. (1997). Glacial Cycles and Astronomical Forcing. Science, 277(5323), 215-218. DOI: https://doi.org/10.1126/science.277.5323.215
Niedzielski, T. (2014). El Niño/Southern Oscillation and Selected Environmental Consequences. In Advances in Geophysics (pp. 77-122). DOI: https://doi.org/10.1016/bs.agph.2014.08.002
Nunes, F., & Norris, R. D. (2006). Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature, 439(7072), 60-63. DOI: https://doi.org/10.1038/nature04386
Oloyede, M. O., Benson, N. U., & Williams, A. B. (2021). Climate change and coastal vulnerability assessment methods: A review. IOP Conference Series Earth and Environmental Science, 665(1), 012069. DOI: https://doi.org/10.1088/1755-1315/665/1/012069
Oostra, B. (2015). Introducing Earth’s Orbital Eccentricity. The Physics Teacher, 53(9), 554-556. DOI: https://doi.org/10.1119/1.4935770
Paillard, D. (2006). What Drives the Ice Age Cycle? Science, 313(5786), 455-456. DOI: https://doi.org/10.1126/science.1131297
Palter, J. B. (2015). The Role of the Gulf Stream in European Climate. Annual Review of Marine Science, 7(1), 113-137. DOI: https://doi.org/10.1146/annurev-marine-010814-015656
Park, J., & Oglesby, R. J. (1991). Milankovitch rhythms in the Cretaceous: A GCM modelling study. Palaeogeography Palaeoclimatology Palaeoecology, 90(4), 329-355. DOI: https://doi.org/10.1016/s0031-0182(12)80034-4
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42. DOI: https://doi.org/10.1038/nature01286
Pielou, E. C. (2008). Plankton, from the last ice age to the year 3007. ICES Journal of Marine Science, 65(3), 296-301. DOI: https://doi.org/10.1093/icesjms/fsn008
Pierrehumbert, R. T. (2010). Principles of Planetary Climate. University of Chicago. DOI: https://doi.org/10.1017/cbo9780511780783
Putnam, A. E., & Broecker, W. S. (2017). Human-induced changes in the distribution of rainfall. Science Advances, 3(5). DOI: https://doi.org/10.1126/sciadv.1600871
Rapp, D. (2012). Ice Ages and Interglacials. In Springer eBooks. DOI: https://doi.org/10.1007/978-3-642-30029-5
Raymo, M. E., & Huybers, P. (2008). Unlocking the mysteries of the ice ages. Nature, 451(7176), 284-285. DOI: https://doi.org/10.1038/nature06589
Rial, J. A., Pielke, R. A., Sr, Beniston, M., Claussen, M., Canadell, J., Cox, P., Held, H., De Noblet-Ducoudré, N., Prinn, R., Reynolds, J. F., & Salas, J. D. (2004). Nonlinearities, Feedbacks and Critical Thresholds within the Earth’s Climate System. Climatic Change, 65(1/2), 11-38. DOI: https://doi.org/10.1023/b:clim.0000037493.89489.3f
Ribes, A., Qasmi, S., & Gillett, N. (2021). Making climate projections conditional on historical observations. Science Advances, 7(4). DOI: https://doi.org/10.1126/sciadv.abc0671
Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., & Moomaw, W. R. (2019). World Scientists’ Warning of a Climate Emergency. BioScience. DOI: https://doi.org/10.1093/biosci/biz088
Rivera, J. A., & Arnould, G. (2020). Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901-2014). Atmospheric Research, 241, 104953. DOI: https://doi.org/10.1016/j.atmosres.2020.104953
Robinson, M., Dowsett, H., Chandler, M., Cazenave, A., Geissman, J., Gordon, W., Grande, M., Virji, H., & Spilhaus, A. (2008). Eos, Transactions, American Geophysical Union Volume 89, Number 49, 2 December 2008. Eos, 89(49). DOI: https://doi.org/10.1029/eost2008eo49
Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191-219. DOI: https://doi.org/10.1029/1998rg000054
Röhl, U., Westerhold, T., Bralower, T. J., & Zachos, J. C. (2007). On the duration of the Paleocene‐Eocene thermal maximum (PETM).
Geochemistry Geophysics Geosystems, 8(12). DOI: https://doi.org/10.1029/2007gc001784
Rönnelid, M. (2000). The origin of the asymmetric annual irradiation distribution at high latitudes. Renewable Energy, 19(3), 345-358. DOI: https://doi.org/10.1016/s0960-1481(99)00064-6
Sabine, C. L., & Feely, R. A. (2007). The oceanic sink for carbon dioxide. In CABI eBooks (pp. 31-49). DOI: https://doi.org/10.1079/9781845931896.0031
Sahling, H., Römer, M., Pape, T., Bergès, B., Fereirra, C. D. S., Boelmann, J., Geprägs, P., Tomczyk, M., Nowald, N., Dimmler, W., Schroedter, L., Glockzin, M., & Bohrmann, G. (2014). Gas emissions at the continental margin west of Svalbard: mapping, sampling, and quantification. Biogeosciences, 11(21), 6029-6046. DOI: https://doi.org/10.5194/bg-11-6029-2014
Saklani, N., & Khurana, A. (2019). Global Warming: Effect on Living Organisms, Causes and its Solutions. International Journal of Engineering and Management Research, 9(5), 24-26. DOI: https://doi.org/10.31033/ijemr.9.5.4
Samset, B. H., Zhou, C., Fuglestvedt, J. S., Lund, M. T., Marotzke, J., & Zelinka, M. D. (2023). Steady global surface warming from 1973 to 2022 but increased warming rate after 1990. Communications Earth & Environment, 4(1). DOI: https://doi.org/10.1038/s43247-023-01061-4
Sanderson, M. G., Hemming, D. L., & Betts, R. A. (2010). Regional temperature and precipitation changes under high-end (≥4 ° C) global warming. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 369(1934), 85-98. DOI: https://doi.org/10.1098/rsta.2010.0283
Sayemuzzaman, M., & Jha, M. K. (2013). Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmospheric Research, 137, 183-194. DOI: https://doi.org/10.1016/j.atmosres.2013.10.012
Scaife, A., Guilyardi, E., Cain, M., & Gilbert, A. (2019). What is the El Niño-Southern Oscillation? Weather, 74(7), 250-251. DOI: https://doi.org/10.1002/wea.3404
Schwartz, S. E. (2018). Resource Letter GECC-1: The Greenhouse Effect and Climate Change: Earth’s Natural Greenhouse Effect. American Journal of Physics, 86(8), 565-576. DOI: https://doi.org/10.1119/1.5045574
Scotese, C. R., Song, H., Mills, B. J., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. DOI: https://doi.org/10.1016/j.earscirev.2021.103503
Seager, R., Battisti, D. S., Yin, J., Gordon, N., Naik, N., Clement, A. C., & Cane, M. A. (2002). Is the Gulf Stream responsible for Europe’s mild winters? Quarterly Journal of the Royal Meteorological Society, 128(586), 2563-2586. DOI: https://doi.org/10.1256/qj.01.128
Seidov, D., Mishonov, A., Reagan, J., & Parsons, R. (2019). Resilience of the Gulf Stream path on decadal and longer timescales. Scientific Reports, 9(1). DOI: https://doi.org/10.1038/s41598-019-48011-9
Sellers, P. J., Schimel, D. S., Moore, B., Liu, J., & Eldering, A. (2018). Observing carbon cycle-climate feedbacks from space. Proceedings of the National Academy of Sciences, 115(31), 7860-7868. DOI: https://doi.org/10.1073/pnas.1716613115
Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., & Waple, A. (2001). Solar Forcing of Regional Climate Change During the Maunder Minimum. Science, 294(5549), 2149-2152. DOI: https://doi.org/10.1126/science.1064363
Sluijs, A., Van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., LeVay, L. J., Reichart, G., & Slomp, C. P. (2014). Warming, euxinia and sea level rise during the Paleocene-Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Climate of the Past, 10(4), 1421-1439. DOI: https://doi.org/10.5194/cp-10-1421-2014
Solanki, S. K., Krivova, N. A., & Haigh, J. D. (2013). Solar Irradiance Variability and Climate. Annual Review of Astronomy and Astrophysics, 51(1), 311-351. DOI: https://doi.org/10.1146/annurev-astro-082812-141007
Stern, N. (2022). A Time for Action on Climate Change and a Time for Change in Economics. The Economic Journal, 132(644), 1259-1289. DOI: https://doi.org/10.1093/ej/ueac005
Storey, M., Duncan, R. A., & Swisher, C. C. (2007). Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic. Science, 316(5824), 587-589. DOI: https://doi.org/10.1126/science.1135274
Stothers, R. B. (1989). Volcanic eruptions and solar activity. Journal of Geophysical Research Atmospheres, 94(B12), 17371-17381. DOI: https://doi.org/10.1029/jb094ib12p17371
Sun, F., Roderick, M. L., & Farquhar, G. D. (2018). Rainfall statistics, stationarity, and climate change. Proceedings of the National Academy of Sciences, 115(10), 2305-2310. DOI: https://doi.org/10.1073/pnas.1705349115
Takahashi, H. G. (2024). GPC/m: Global Precipitation Climatology by Machine Learning; Quasi-global, Daily, and One Degree Spatial Resolution. arXiv (Cornell University). DOI: https://doi.org/10.48550/arxiv.2409.09639
Tickell, C. (1993). Global warming: Trends and effects. Parasitology, 106(S1), S5-S9. DOI: https://doi.org/10.1017/s0031182000086078
Trenberth, K. E., Caron, J. M., Stepaniak, D. P., & Worley, S. (2002). Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. Journal of Geophysical Research Atmospheres, 107(D8). DOI: https://doi.org/10.1029/2000jd000298
Turkington, T., Timbal, B., & Rahmat, R. (2018). The impact of global warming on sea surface temperature based El Niño-Southern Oscillation monitoring indices. International Journal of Climatology, 39(2), 1092-1103. DOI: https://doi.org/10.1002/joc.5864
Understanding Earth’s deep past: lessons for our climate future. (2012). Choice Reviews Online, 49(07), 49-3883. DOI: https://doi.org/10.5860/choice.49-3883
Vecchi, G. A., & Wittenberg, A. T. (2010). El Niño and our future climate: where do we stand? Wiley Interdisciplinary Reviews Climate Change, 1(2), 260-270. DOI: https://doi.org/10.1002/wcc.33
Wang, B., Jhun, J., & Moon, B. (2007). Variability and Singularity of Seoul, South Korea, Rainy Season (1778-2004). Journal of Climate, 20(11), 2572-2580. DOI: https://doi.org/10.1175/jcli4123.1
Wang, G., Huang, R. X., Su, J., & Chen, D. (2012). The Effects of Thermohaline Circulation on Wind-Driven Circulation in the South China Sea. Journal of Physical Oceanography, 42(12), 2283-2296. DOI: https://doi.org/10.1175/jpo-d-11-0227.1
Wen, J. J., Yuan, J., Wu, S. H., & Han, T. Y. (2016). Gravity inequalities and the mean temperature on a planet. Journal of Inequalities and Applications, 2016(1). DOI: https://doi.org/10.1186/s13660-016-1195-9
White, M. C. (1994). National Aeronautics and Space Administration. Eos, 75(7), 74. DOI: https://doi.org/10.1029/94eo00779
Willett, H. C. (1949). Solar Variability as a Factor in the Fluctuations of Climate during Geological Time. Geografiska Annaler, 31, 295. DOI: https://doi.org/10.2307/520372
Winguth, A. M. E. (2011). The Paleocene-Eocene Thermal Maximum: Feedbacks Between Climate Change and Biogeochemical Cycles. In InTech eBooks. DOI: https://doi.org/10.5772/22994
Witkowski, C. R., Von Der Heydt, A. S., Valdes, P. J., Van Der Meer, M. T. J., Schouten, S., & Damsté, J. S. S. (2024). Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene. Nature Communications, 15(1), 5192. DOI: https://doi.org/10.1038/s41467-024-47676-9
Wolff, E. W., Shepherd, J. G., Shuckburgh, E., & Watson, A. J. (2015). Feedbacks on climate in the Earth system: introduction.
Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 373(2054), 20140428. DOI: https://doi.org/10.1098/rsta.2014.0428
Wong, T. E., Cui, Y., Royer, D. L., & Keller, K. (2021). A tighter constraint on Earth-system sensitivity from long-term temperature and carbon-cycle observations. Nature Communications, 12(1). DOI: https://doi.org/10.1038/s41467-021-23543-9
Woods, T. N., Harder, J. W., Kopp, G., & Snow, M. (2022). Solar-Cycle Variability Results from the Solar Radiation and Climate Experiment (SORCE) Mission. Solar Physics, 297(4). DOI: https://doi.org/10.1007/s11207-022-01980-z
Wunderling, N., Willeit, M., Donges, J. F., & Winkelmann, R. (2020). Global warming due to loss of large ice masses and Arctic summer sea ice. Nature Communications, 11(1). DOI: https://doi.org/10.1038/s41467-020-18934-3
Wunsch, C. (2002). What Is the Thermohaline Circulation? Science, 298(5596), 1179-1181. DOI: https://doi.org/10.1126/science.1079329
Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J., & Scheffer, M. (2020). Future of the human climate niche. Proceedings of the National Academy of Sciences, 117(21), 11350-11355. DOI: https://doi.org/10.1073/pnas.1910114117
Xu, Z., Ji, F., Liu, B., Feng, T., Gao, Y., He, Y., & Chang, F. (2021). Long‐term evolution of global sea surface temperature trend. International Journal of Climatology, 41(9), 4494-4508. DOI: https://doi.org/10.1002/joc.7082
Yan, X., Boyer, T., Trenberth, K., Karl, T. R., Xie, S., Nieves, V., Tung, K., & Roemmich, D. (2016). The global warming hiatus: Slowdown or redistribution? Earth S Future, 4(11), 472-482. DOI: https://doi.org/10.1002/2016ef000417
Yeh, S., Kug, J., Dewitte, B., Kwon, M., Kirtman, B. P., & Jin, F. (2009). El Niño in a changing climate. Nature, 461(7263), 511-514. DOI: https://doi.org/10.1038/nature08316
Zachos, J. C., RöHl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., & Kroon, D. (2005). Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science, 308(5728), 1611-1615. DOI: https://doi.org/10.1126/science.1109004
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., & Premoli-Silva, I. (2003). A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum. Science, 302(5650), 1551-1554. DOI: https://doi.org/10.1126/science.1090110
Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517), 686-693. DOI: https://doi.org/10.1126/science.1059412
Zanchettin, D. (2023). Volcanic Eruptions: A Source of Irreducible Uncertainty for Future Climates. Geophysical Research Letters, 50(17). DOI: https://doi.org/10.1029/2023gl105482
Zhang, T., Stackhouse, P. W., Gupta, S. K., Cox, S. J., Mikovitz, J. C., & Hinkelman, L. M. (2012). The validation of the GEWEX SRB surface shortwave flux data products using BSRN measurements: A systematic quality control, production and application approach. Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 127-140. DOI: https://doi.org/10.1016/j.jqsrt.2012.10.004
Zhang, Z., Pan, Z., Pan, F., Zhang, J., Han, G., Huang, N., Wang, J., Pan, Y., Wang, Z., & Peng, R. (2020). The Change Characteristics and Interactions of Soil Moisture and Temperature in the Farmland in Wuchuan County, Inner Mongolia, China. Atmosphere, 11(5), 503. DOI: https://doi.org/10.3390/atmos11050503
Zickfeld, K., Eby, M., Matthews, H. D., & Weaver, A. J. (2009). Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proceedings of the National Academy of Sciences, 106(38), 16129-16134. DOI: https://doi.org/10.1073/pnas.0805800106
Zielinski, G. A. (2002). Climatic Impact of Volcanic Eruptions. The Scientific World JOURNAL, 2, 869-884. DOI: https://doi.org/10.1100/tsw.2002.83
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.