##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 27, 2024

Peter J. Hoffman

Murray Lee  

Abstract

Global mean surface temperature serves as a crucial metric in understanding the Earth’s climate dynamics, providing insights into long-term climate trends and variability. Over the course of a million years, the trajectory of global temperatures has been shaped by a multitude of factors, including natural climatic cycles, human activities, and external influences. By examining the historical trends and drivers influencing global mean surface temperature, researchers can gain valuable insights into the past, present, and future climate scenarios. This article delves into the intricate interplay of these factors and explores the lessons we can learn from studying the temperature trajectory over a million-year span.

##plugins.themes.bootstrap3.article.details##

Keywords

Global Mean Surface Temperature, Climate Dynamics, Influencing Factors, Historic Trajectory

Supporting Agencies

No funding source declared.

References
Ahlers, J. P. (2016). Gravity-darkened seasons: Insolation around rapid rotators. The Astrophysical Journal, 832(1), 93. DOI: https://doi.org/10.3847/0004-637x/832/1/93

Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., Talley, L. D., & Wallace, J. M. (2003). Abrupt Climate Change. Science, 299(5615), 2005-2010. DOI: https://doi.org/10.1126/science.1081056

Anandhi, A., & Bentley, C. (2018). Predicted 21st century climate variability in southeastern U.S. using downscaled CMIP5 and meta-analysis. Catena, 170, 409-420. DOI: https://doi.org/10.1016/j.catena.2018.06.005

Andrews, T., Gregory, J. M., Paynter, D., Silvers, L. G., Zhou, C., Mauritsen, T., Webb, M. J., Armour, K. C., Forster, P. M., & Titchner, H. (2018). Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity. Geophysical Research Letters, 45(16), 8490-8499. DOI: https://doi.org/10.1029/2018gl078887

Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., & Mirin, A. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16), 6550-6555. DOI: https://doi.org/10.1073/pnas.0608998104

Barboza, L., Li, B., Tingley, M. P., & Viens, F. G. (2014). Reconstructing past temperatures from natural proxies and estimated climate forcings using short- and long-memory models. The Annals of Applied Statistics, 8(4). DOI: https://doi.org/10.1214/14-aoas785

Baswald, K., Lencinas, J. D., & Loguercio, G. (2002). Carbon Reservoirs in Temperate South American Nothofagus Forests. The Scientific World JOURNAL, 2, 53-75. DOI: https://doi.org/10.1100/tsw.2002.75

Bindoff, N. L., Stott, P. a. A., Achutarao, K. M., Allen, M. R. R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Sebbari, R., Zhang, X., Aldrin, M., Sarojini, B. B., Beer, J., Boucher, O., Braconnot, P., Browne, O., Chang, P., . . . Zhang, R. (2014). Detection and Attribution of Climate Change: from Global to Regional. In Cambridge University Press eBooks (pp. 867-952). DOI: https://doi.org/10.1017/cbo9781107415324.022

Bowen, G. J., Maibauer, B. J., Kraus, M. J., Röhl, U., Westerhold, T., Steimke, A., Gingerich, P. D., Wing, S. L., & Clyde, W. C. (2014). Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene thermal maximum. Nature Geoscience, 8(1), 44-47. DOI: https://doi.org/10.1038/ngeo2316

Bunde, A., Ludescher, J., & Schellnhuber, H. J. (2021). How to determine the statistical significance of trends in seasonal records: application to Antarctic temperatures. Climate Dynamics, 58(5-6), 1349-1361. DOI: https://doi.org/10.1007/s00382-021-05974-8

Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., & Jin, F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111-116. DOI: https://doi.org/10.1038/nclimate2100

Cai, W., Wu, L., Lengaigne, M., Li, T., McGregor, S., Kug, J., Yu, J., Stuecker, M. F., Santoso, A., Li, X., Ham, Y., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside, N., . . . Chang, P. (2019). Pantropical climate interactions. Science, 363(6430). DOI: https://doi.org/10.1126/science.aav4236

Canadell, P., Lequre, C., Raupach, M., Ciais, P., Conway, T., Field, C., Houghton, S., & Marland, G. (2009). Global carbon sources and sinks: 2007 update. IOP Conference Series Earth and Environmental Science, 6(8), 082001. DOI: https://doi.org/10.1088/1755-1307/6/8/082001

Carraro, C. (2016). Climate change: scenarios, impacts, policy, and development opportunities. Agricultural Economics, 47(S1), 149-157. DOI: https://doi.org/10.1111/agec.12306

Chapter 16: El Niño-Southern Oscillation. (2013). In Society for Industrial and Applied Mathematics eBooks (pp. 193-211). DOI: https://doi.org/10.1137/1.9781611972610.ch16

Chu, M., Guzman, J. A., Garbrecht, J., Schneider, J., Starks, P., Steiner, J. L., & Moriasi, D. (2015). Long-term Changes in the Pattern of Rainfall Events: Implications in the Context of Climate Change Scenarios. In ASABE 1st Climate Change Symposium: Adaptation and Mitigation Conference Proceedings (pp. 1-3). ASABE. DOI: https://doi.org/10.13031/cc.20152141629

Clark, P. U., Shakun, J. D., Rosenthal, Y., Köhler, P., & Bartlein, P. J. (2024). Global and regional temperature change over the past 4.5 million years. Science, 383(6685), 884-890. DOI: https://doi.org/10.1126/science.adi1908

Clarke, G., Leverington, D., Teller, J., & Dyke, A. (2003). Superlakes, Megafloods, and Abrupt Climate Change. Science, 301(5635), 922-923. DOI: https://doi.org/10.1126/science.1085921

CLIMAP Project Members. (1976). The Surface of the Ice-Age Earth. Science, 191(4232), 1131-1137. DOI: https://doi.org/10.1126/science.191.4232.1131

Cohen, S., & Stanhill, G. (2015). Widespread Surface Solar Radiation Changes and Their Effects. In Elsevier eBooks (pp. 491-511). DOI: https://doi.org/10.1016/b978-0-444-63524-2.00029-4

Collett, T., Bahk, J., Baker, R., Boswell, R., Divins, D., Frye, M., Goldberg, D., Husebø, J., Koh, C., Malone, M., Morell, M., Myers, G., Shipp, C., & Torres, M. (2014). Methane Hydrates in Nature—Current Knowledge and Challenges. Journal of Chemical & Engineering Data, 60(2), 319-329. DOI: https://doi.org/10.1021/je500604h

Collins, M., Chandler, R. E., Cox, P. M., Huthnance, J. M., Rougier, J., & Stephenson, D. B. (2012). Quantifying future climate change. Nature Climate Change, 2(6), 403-409. DOI: https://doi.org/10.1038/nclimate1414

Cooke, A. (2012). Ice Ages and Long-Term Cycles. In Astronomers’ universe (pp. 235-250). DOI: https://doi.org/10.1007/978-1-4614-4608-8_11

Cramer, B. S., & Kent, D. V. (2005). Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger. Palaeogeography Palaeoclimatology Palaeoecology, 224(1-3), 144-166. DOI: https://doi.org/10.1016/j.palaeo.2005.03.040

Deng, X., Zhao, C., Lin, Y., Zhang, T., Qu, Y., Zhang, F., Wang, Z., & Wu, F. (2014). Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective. Energies, 7(4), 2720-2739. DOI: https://doi.org/10.3390/en7042720

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M. M., Dickinson, R. E. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Da Silva Dias, P. L., Wofsy, S. C. C., Zhang, X., Arora, V., Baker, D., Bonan, G., Bousquet, P., . . . Zhou, L. (2007). Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change the Physical Science Basis (pp. 499-587). Cambridge University Press. Available at: https://hal.science/hal-03375731

Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M., & Putnam, A. E. (2010). The Last Glacial Termination. Science, 328(5986), 1652-1656. DOI: https://doi.org/10.1126/science.1184119

Dobrovolskis, A. R. (2009). Insolation patterns on synchronous exoplanets with obliquity. Icarus, 204(1), 1-10. DOI: https://doi.org/10.1016/j.icarus.2009.06.007

Dobrovolskis, A. R. (2014). Insolation patterns on eccentric exoplanets. Icarus, 250, 395-399. DOI: https://doi.org/10.1016/j.icarus.2014.12.017

Döös, K., Nilsson, J., Nycander, J., Brodeau, L., & Ballarotta, M. (2012). The World Ocean Thermohaline Circulation*. Journal of Physical Oceanography, 42(9), 1445-1460. DOI: https://doi.org/10.1175/jpo-d-11-0163.1

Dowling, T. E., & Showman, A. P. (2007). Earth as a Planet: Atmosphere and Oceans. In Elsevier eBooks (pp. 169-188). DOI: https://doi.org/10.1016/b978-012088589-3/50013-x

Dunstan, P. K., Foster, S. D., King, E., Risbey, J., O’Kane, T. J., Monselesan, D., Hobday, A. J., Hartog, J. R., & Thompson, P. A. (2018). Global patterns of change and variation in sea surface temperature and chlorophyll a. Scientific Reports, 8(1). DOI: https://doi.org/10.1038/s41598-018-33057-y

Ebi, K. L., Hallegatte, S., Kram, T., Arnell, N. W., Carter, T. R., Edmonds, J., Kriegler, E., Mathur, R., O’Neill, B. C., Riahi, K., Winkler, H., Van Vuuren, D. P., & Zwickel, T. (2013). A new scenario framework for climate change research: background, process, and future directions. Climatic Change, 122(3), 363-372. DOI: https://doi.org/10.1007/s10584-013-0912-3

Ehlers, J., & Gibbard, P. L. (2006). The extent and chronology of Cenozoic Global Glaciation. Quaternary International, 164-165, 6-20. DOI: https://doi.org/10.1016/j.quaint.2006.10.008

Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., & Piotrowski, A. M. (2012). Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition. Science, 337(6095), 704-709. DOI: https://doi.org/10.1126/science.1221294

Fahey, D., Doherty, S., Hibbard, K., Romanou, A., & Taylor, P. (2017). Physical drivers of climate change. In Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program. U.S. Global Change Research Program. Available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1572&context=usdeptcommercepub

Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore, B., III, Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., & Steffen, W. (2000). The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 290(5490), 291-296. DOI: https://doi.org/10.1126/science.290.5490.291

Ferrari, R., & Ferreira, D. (2011). What processes drive the ocean heat transport? Ocean Modelling, 38(3-4), 171-186. DOI: https://doi.org/10.1016/j.ocemod.2011.02.013

Ferrusquía-Villafranca, I., Arroyo-Cabrales, J., Johnson, E., Ruiz-González, J., Martínez-Hernández, E., Gama-Castro, J., De Anda-Hurtado, P., & Polaco, O. J. (2017). Quaternary Mammals, People, and Climate Change: A View from Southern North America. In Vertebrate paleobiology and paleoanthroplogy series/Vertebrate paleobiology and paleoanthropology series (pp. 27-67). DOI: https://doi.org/10.1007/978-94-024-1106-5_3

Folberth, G. A., Butler, T. M., Collins, W. J., & Rumbold, S. T. (2014). Megacities and climate change - A brief overview. Environmental Pollution, 203, 235-242. DOI: https://doi.org/10.1016/j.envpol.2014.09.004

Foster, G. L., Hull, P., Lunt, D. J., & Zachos, J. C. (2018). Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 376(2130), 20170086. DOI: https://doi.org/10.1098/rsta.2017.0086

Friedrich, T., & Timmermann, A. (2019). Using Late Pleistocene sea surface temperature reconstructions to constrain future greenhouse warming. Earth and Planetary Science Letters, 530, 115911. DOI: https://doi.org/10.1016/j.epsl.2019.115911

Frieling, J., Svensen, H. H., Planke, S., Cramwinckel, M. J., Selnes, H., & Sluijs, A. (2016). Thermogenic methane release as a cause for the long duration of the PETM. Proceedings of the National Academy of Sciences, 113(43), 12059-12064. DOI: https://doi.org/10.1073/pnas.1603348113

Fu, M., Abbot, D. S., Koeberl, C., & Fedorov, A. (2024). Impact-induced initiation of Snowball Earth: A model study. Science Advances, 10(6). DOI: https://doi.org/10.1126/sciadv.adk5489

Garuma, G. F., Blanchet, J., Girard, É., & Leduc, M. (2018). Urban surface effects on current and future climate. Urban Climate, 24, 121-138. DOI: https://doi.org/10.1016/j.uclim.2018.02.003

Gerlach, K. a. M. M. P. D. R. K. T. M. (1998). Impact of Volcanic Gases. Available at: https://pubs.usgs.gov/of/1997/of97-262/of97-262.html

Ghimire, B., Williams, C. A., Masek, J., Gao, F., Wang, Z., Schaaf, C., & He, T. (2014). Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis. Geophysical Research Letters, 41(24), 9087-9096. DOI: https://doi.org/10.1002/2014gl061671

Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., & Wilson, P. A. (2006). Nannoplankton Extinction and Origination Across the Paleocene-Eocene Thermal Maximum. Science, 314(5806), 1770-1773. DOI: https://doi.org/10.1126/science.1133902

Gilruth, P., Duguma, L. A., Minang, P. A., Bah, A., Jaiteh, M. S., Mwangi, S., & Ahmad, M. (2021). A Framework for Monitoring Ecosystems-Based Adaptation to Climate Change: Experience from The Gambia. Sustainability, 13(19), 10959. DOI: https://doi.org/10.3390/su131910959

Grotjahn, R. (2014). General Circulation of the Atmosphere | Mean Characteristics. In Elsevier eBooks (pp. 73-89). DOI: https://doi.org/10.1016/b978-0-12-382225-3.00154-7

Guan, B., & Lei, H. (2009). Magnitude of Dissociation of Methane Hydrate Reservoir Associate with Climate Change. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (Vol. 53, pp. 1-6). IEEE. DOI: https://doi.org/10.1109/icbbe.2009.5163024

Gurjar, B. R., Ojha, C. S. P., Surampalli, R. Y., Walvekar, P. P., & Tyagi, V. (2013). Greenhouse Gas Emissions and Climate Change: An Overview. In American Society of Civil Engineers eBooks (pp. 9-25). DOI: https://doi.org/10.1061/9780784412718.ch02
Hasyimi, V., & Azizalrahman, H. (2018). A Strategy-Based Model for Low Carbon Cities. Sustainability, 10(12), 4828. DOI: https://doi.org/10.3390/su10124828

Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 194(4270), 1121-1132. DOI: https://doi.org/10.1126/science.194.4270.1121

Hibbard, K., Hoffman, F., Huntzinger, D., & West, T. (2017). Changes in land cover and terrestrial biogeochemistry. In Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program. U.S. Global Change Research Program. Available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1580&context=usdeptcommercepub

Higgins, J. A., & Schrag, D. P. (2006). Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 245(3-4), 523-537. DOI: https://doi.org/10.1016/j.epsl.2006.03.009

Hinnov, L. A. (2005). Earth’s orbital parameters and cycle stratigraphy. In Cambridge University Press eBooks (pp. 55-62). DOI: https://doi.org/10.1017/cbo9780511536045.005

Holbourn, A., Kuhnt, W., Kulhanek, D. K., Mountain, G., Rosenthal, Y., Sagawa, T., Lübbers, J., & Andersen, N. (2024). Re-organization of Pacific overturning circulation across the Miocene Climate Optimum. Nature Communications, 15(1). DOI: https://doi.org/10.1038/s41467-024-52516-x

Houghton, R. (2013). The Contemporary Carbon Cycle. In Elsevier eBooks (pp. 399-435). DOI: https://doi.org/10.1016/b978-0-08-095975-7.00810-x

Hulme, M., Mitchell, J., Ingram, W., Lowe, J., Johns, T., New, M., & Viner, D. (1999). Climate change scenarios for global impacts studies. Global Environmental Change, 9, S3-S19. DOI: https://doi.org/10.1016/s0959-3780(99)00015-1

Hwang, Y., Xie, S., Chen, P., Tseng, H., & Deser, C. (2024). Contribution of anthropogenic aerosols to persistent La Niña-like conditions in the early 21st century. Proceedings of the National Academy of Sciences, 121(5). DOI: https://doi.org/10.1073/pnas.2315124121
Ismail, N. H. M., Nayan, S., Kadir, N., & Yusoff, M. Y. M. (2020). Carbon Dioxide (CO2) Emission, Energy Consumption and Economic Growth: Evidence from Selected Southeast Asia Countries. Journal of Emerging Economies and Islamic Research, 8(2), 1. DOI: https://doi.org/10.24191/jeeir.v8i2.8937

Jones, P. D. (2002). Changes in climate and variability over the last 1000 years. In International geophysics/International geophysics series (pp. 133-142). DOI: https://doi.org/10.1016/s0074-6142(02)80162-0

Jones, P. D., & Mann, M. E. (2004). Climate over past millennia. Reviews of Geophysics, 42(2). DOI: https://doi.org/10.1029/2003rg000143

Jones, T. D., Ridgwell, A., Lunt, D. J., Maslin, M. A., Schmidt, D. N., & Valdes, P. J. (2010). A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 368(1919), 2395-2415. DOI: https://doi.org/10.1098/rsta.2010.0053

Judd, E. J., Tierney, J. E., Lunt, D. J., Montañez, I. P., Huber, B. T., Wing, S. L., & Valdes, P. J. (2024). A 485-million-year history of Earth’s surface temperature. Science, 385(6715). DOI: https://doi.org/10.1126/science.adk3705

Karl, T. R., & Trenberth, K. E. (2003). Modern Global Climate Change. Science, 302(5651), 1719-1723. DOI: https://doi.org/10.1126/science.1090228

Katz, M. E., Pak, D. K., Dickens, G. R., & Miller, K. G. (1999). The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum. Science, 286(5444), 1531-1533. DOI: https://doi.org/10.1126/science.286.5444.1531

Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P. S., Heiri, O., & Davis, B. (2020). Holocene global mean surface temperature, a multi-method reconstruction approach. Scientific Data, 7(1). DOI: https://doi.org/10.1038/s41597-020-0530-7

Keeling, C. D. (1997). Climate change and carbon dioxide: An introduction. Proceedings of the National Academy of Sciences, 94(16), 8273-8274. DOI: https://doi.org/10.1073/pnas.94.16.8273

Kemp, L., Xu, C., Depledge, J., Ebi, K. L., Gibbins, G., Kohler, T. A., Rockström, J., Scheffer, M., Schellnhuber, H. J., Steffen, W., & Lenton, T. M. (2022). Climate Endgame: Exploring catastrophic climate change scenarios. Proceedings of the National Academy of Sciences, 119(34). DOI: https://doi.org/10.1073/pnas.2108146119

King, K. E., Cook, E. R., Anchukaitis, K. J., Cook, B. I., Smerdon, J. E., Seager, R., Harley, G. L., & Spei, B. (2024). Increasing prevalence of hot drought across western North America since the 16th century. Science Advances, 10(4). DOI: https://doi.org/10.1126/sciadv.adj4289

Kohyama, T., Hartmann, D. L., & Battisti, D. S. (2017). La Niña-like Mean-State Response to Global Warming and Potential Oceanic Roles. Journal of Climate, 30(11), 4207-4225. DOI: https://doi.org/10.1175/jcli-d-16-0441.1

Kopp, G. (2016). Earth’s Incoming Energy: The Total Solar Irradiance. In Elsevier eBooks (pp. 32-66). DOI: https://doi.org/10.1016/b978-0-12-409548-9.10366-5

Kosaka, Y., & Xie, S. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403-407. DOI: https://doi.org/10.1038/nature12534

Kostadinov, T. S., & Gilb, R. (2014). Earth Orbit v2.1: a 3-D visualization and analysis model of Earth’s orbit, Milankovitch cycles and insolation. Geoscientific Model Development, 7(3), 1051-1068. DOI: https://doi.org/10.5194/gmd-7-1051-2014

Kullberg, A. T., & Feeley, K. J. (2023). Urban Heat Islands and What They Can Teach Us About Climate Change. Frontiers for Young Minds, 11, 943515. DOI: https://doi.org/10.3389/frym.2023.943515

Latif, M., & Keenlyside, N. S. (2008). El Niño/Southern Oscillation response to global warming. Proceedings of the National Academy of Sciences, 106(49), 20578-20583. DOI: https://doi.org/10.1073/pnas.0710860105

Lausier, A. M., & Jain, S. (2018). Overlooked Trends in Observed Global Annual Precipitation Reveal Underestimated Risks. Scientific Reports, 8(1). DOI: https://doi.org/10.1038/s41598-018-34993-5

Lawrence, D. J., Runyon, A. N., Gross, J. E., Schuurman, G. W., & Miller, B. W. (2021). Divergent, plausible, and relevant climate futures for near- and long-term resource planning. Climatic Change, 167(3-4), 38. DOI: https://doi.org/10.1007/s10584-021-03169-y

Li, B., Nychka, D. W., & Ammann, C. M. (2010). The Value of Multiproxy Reconstruction of Past Climate. Journal of the American Statistical Association, 105(491), 883-895. DOI: https://doi.org/10.1198/jasa.2010.ap09379

Linsenmeier, M., Pascale, S., & Lucarini, V. (2014a). Habitability of Earth-like planets with high obliquity and eccentric orbits: results from a general circulation model. NASA/ADS. Available at: https://ui.adsabs.harvard.edu/abs/2014EGUGA..1615068L/abstract

Linsenmeier, M., Pascale, S., & Lucarini, V. (2014b). Climate of Earth-like planets with high obliquity and eccentric orbits: Implications for habitability conditions. Planetary and Space Science, 105, 43-59. DOI: https://doi.org/10.1016/j.pss.2014.11.003

Liu, F., Song, F., & Luo, Y. (2024). Human-induced intensified seasonal cycle of sea surface temperature. Nature Communications, 15(1). DOI: https://doi.org/10.1038/s41467-024-48381-3

Liu, J., Sample, D., & Thomas, W. (2015). Analysis on the Variation of Precipitation-Dry Period Frequency Pattern of the Continental United States. In ASABE 1st Climate Change Symposium: Adaptation and Mitigation Conference Proceedings (pp. 1-3). American Society of Agricultural and Biological Engineers. DOI: https://doi.org/10.13031/cc.20152093305

Loeb, N. G., Wang, H., Allan, R. P., Andrews, T., Armour, K., Cole, J. N. S., Dufresne, J., Forster, P., Gettelman, A., Guo, H., Mauritsen, T., Ming, Y., Paynter, D., Proistosescu, C., Stuecker, M. F., Willén, U., & Wyser, K. (2020). New Generation of Climate Models Track Recent Unprecedented Changes in Earth’s Radiation Budget Observed by CERES. Geophysical Research Letters, 47(5). DOI: https://doi.org/10.1029/2019gl086705

Lourens, L. J., & Tuenter, E. (2009). The Role of Variations of the Earth’s Orbital Characteristics in Climate Change. In Elsevier eBooks (pp. 103-123). DOI: https://doi.org/10.1016/b978-0-444-53301-2.00005-1

Lunt, D. J., Elderfield, H., Pancost, R., Ridgwell, A., Foster, G. L., Haywood, A., Kiehl, J., Sagoo, N., Shields, C., Stone, E. J., & Valdes, P. (2013). Warm climates of the past—a lesson for the future? Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 371(2001), 20130146. DOI: https://doi.org/10.1098/rsta.2013.0146

Mann, M. E. (2002). The Value of Multiple Proxies. Science, 297(5586), 1481-1482. DOI: https://doi.org/10.1126/science.1074318

Mann, M. E. (2006). Climate Over the Past Two Millennia. Annual Review of Earth and Planetary Sciences, 35(1), 111-136. DOI: https://doi.org/10.1146/annurev.earth.35.031306.140042

Mann, M. E., Bradley, R. S., & Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392(6678), 779-787. DOI: https://doi.org/10.1038/33859

Mann, M. E., Gille, E., Overpeck, J., Gross, W., Bradley, R. S., Keimig, F. T., & Hughes, M. K. (2000). Global Temperature Patterns in Past Centuries: An Interactive Presentation. Earth Interactions, 4(4), 1. Available at:
https://journals.ametsoc.org/view/journals/eint/4/4/1087-3562_2000_004_0001_gtpipc_2.3.co_2.xml

Mann, M. E., & Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters, 30(15). DOI: https://doi.org/10.1029/2003gl017814

Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., & Ni, F. (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105(36), 13252-13257. DOI: https://doi.org/10.1073/pnas.0805721105

Marsh, G. E. (2020). Irradiance Variations due to Orbital and Solar Inertial Motion: The Effect on Earth’s Surface Temperature. arXiv (Cornell University). DOI: https://doi.org/10.48550/arxiv.2003.01374

Maslov, L. A. (2014). Self‐organization of the Earth’s climate system versus Milankovitch‐Berger astronomical cycles. Journal of Advances in Modeling Earth Systems, 6(3), 650-657. DOI: https://doi.org/10.1002/2014ms000312

Mastrandrea, M. D., & Schneider, S. H. (2008). Resource Letter GW-2: Global Warming. American Journal of Physics, 76(7), 608-614. DOI: https://doi.org/10.1119/1.2894511

McCarthy, G. D., Joyce, T. M., & Josey, S. A. (2018). Gulf Stream Variability in the Context of Quasi‐Decadal and Multidecadal Atlantic Climate Variability. Geophysical Research Letters, 45(20). DOI: https://doi.org/10.1029/2018gl079336

McGee, K. A., Doukas, M. P., Kessler, R., & Gerlach, T. M. (1997). Impact of Volcanic Gases. USGS. Available at: https://pubs.usgs.gov/of/1997/of97-262/of97-262.html

McGehee, R., & Lehman, C. (2012). A Paleoclimate Model of Ice-Albedo Feedback Forced by Variations in Earth’s Orbit. SIAM Journal on Applied Dynamical Systems, 11(2), 684-707. DOI: https://doi.org/10.1137/10079879x

McInerney, F. A., & Wing, S. L. (2011). The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annual Review of Earth and Planetary Sciences, 39(1), 489-516. DOI: https://doi.org/10.1146/annurev-earth-040610-133431

McManus, J. F. (2004). A great grand-daddy of ice cores. Nature, 429(6992), 611-612. DOI: https://doi.org/10.1038/429611a

McMichael, A. J. (2012). Insights from past millennia into climatic impacts on human health and survival. Proceedings of the National Academy of Sciences, 109(13), 4730-4737. DOI: https://doi.org/10.1073/pnas.1120177109

Miles, G. M., Grainger, R. G., & Highwood, E. J. (2004). The significance of volcanic eruption strength and frequency for climate. Quarterly Journal of the Royal Meteorological Society, 130(602), 2361-2376. DOI: https://doi.org/10.1256/qj.03.60

Milliman, J. D., & Emery, K. O. (1968). Sea Levels during the Past 35,000 Years. Science, 162(3858), 1121-1123. DOI: https://doi.org/10.1126/science.162.3858.1121

Mills, B. J., Krause, A. J., Scotese, C. R., Hill, D. J., Shields, G. A., & Lenton, T. M. (2018). Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Research, 67, 172-186. DOI: https://doi.org/10.1016/j.gr.2018.12.001

Muller, R. A., & MacDonald, G. J. (1997). Glacial Cycles and Astronomical Forcing. Science, 277(5323), 215-218. DOI: https://doi.org/10.1126/science.277.5323.215

Niedzielski, T. (2014). El Niño/Southern Oscillation and Selected Environmental Consequences. In Advances in Geophysics (pp. 77-122). DOI: https://doi.org/10.1016/bs.agph.2014.08.002

Nunes, F., & Norris, R. D. (2006). Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature, 439(7072), 60-63. DOI: https://doi.org/10.1038/nature04386

Oloyede, M. O., Benson, N. U., & Williams, A. B. (2021). Climate change and coastal vulnerability assessment methods: A review. IOP Conference Series Earth and Environmental Science, 665(1), 012069. DOI: https://doi.org/10.1088/1755-1315/665/1/012069

Oostra, B. (2015). Introducing Earth’s Orbital Eccentricity. The Physics Teacher, 53(9), 554-556. DOI: https://doi.org/10.1119/1.4935770

Paillard, D. (2006). What Drives the Ice Age Cycle? Science, 313(5786), 455-456. DOI: https://doi.org/10.1126/science.1131297

Palter, J. B. (2015). The Role of the Gulf Stream in European Climate. Annual Review of Marine Science, 7(1), 113-137. DOI: https://doi.org/10.1146/annurev-marine-010814-015656

Park, J., & Oglesby, R. J. (1991). Milankovitch rhythms in the Cretaceous: A GCM modelling study. Palaeogeography Palaeoclimatology Palaeoecology, 90(4), 329-355. DOI: https://doi.org/10.1016/s0031-0182(12)80034-4

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42. DOI: https://doi.org/10.1038/nature01286

Pielou, E. C. (2008). Plankton, from the last ice age to the year 3007. ICES Journal of Marine Science, 65(3), 296-301. DOI: https://doi.org/10.1093/icesjms/fsn008

Pierrehumbert, R. T. (2010). Principles of Planetary Climate. University of Chicago. DOI: https://doi.org/10.1017/cbo9780511780783

Putnam, A. E., & Broecker, W. S. (2017). Human-induced changes in the distribution of rainfall. Science Advances, 3(5). DOI: https://doi.org/10.1126/sciadv.1600871

Rapp, D. (2012). Ice Ages and Interglacials. In Springer eBooks. DOI: https://doi.org/10.1007/978-3-642-30029-5

Raymo, M. E., & Huybers, P. (2008). Unlocking the mysteries of the ice ages. Nature, 451(7176), 284-285. DOI: https://doi.org/10.1038/nature06589

Rial, J. A., Pielke, R. A., Sr, Beniston, M., Claussen, M., Canadell, J., Cox, P., Held, H., De Noblet-Ducoudré, N., Prinn, R., Reynolds, J. F., & Salas, J. D. (2004). Nonlinearities, Feedbacks and Critical Thresholds within the Earth’s Climate System. Climatic Change, 65(1/2), 11-38. DOI: https://doi.org/10.1023/b:clim.0000037493.89489.3f

Ribes, A., Qasmi, S., & Gillett, N. (2021). Making climate projections conditional on historical observations. Science Advances, 7(4). DOI: https://doi.org/10.1126/sciadv.abc0671

Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., & Moomaw, W. R. (2019). World Scientists’ Warning of a Climate Emergency. BioScience. DOI: https://doi.org/10.1093/biosci/biz088

Rivera, J. A., & Arnould, G. (2020). Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901-2014). Atmospheric Research, 241, 104953. DOI: https://doi.org/10.1016/j.atmosres.2020.104953

Robinson, M., Dowsett, H., Chandler, M., Cazenave, A., Geissman, J., Gordon, W., Grande, M., Virji, H., & Spilhaus, A. (2008). Eos, Transactions, American Geophysical Union Volume 89, Number 49, 2 December 2008. Eos, 89(49). DOI: https://doi.org/10.1029/eost2008eo49

Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191-219. DOI: https://doi.org/10.1029/1998rg000054
Röhl, U., Westerhold, T., Bralower, T. J., & Zachos, J. C. (2007). On the duration of the Paleocene‐Eocene thermal maximum (PETM).
Geochemistry Geophysics Geosystems, 8(12). DOI: https://doi.org/10.1029/2007gc001784

Rönnelid, M. (2000). The origin of the asymmetric annual irradiation distribution at high latitudes. Renewable Energy, 19(3), 345-358. DOI: https://doi.org/10.1016/s0960-1481(99)00064-6

Sabine, C. L., & Feely, R. A. (2007). The oceanic sink for carbon dioxide. In CABI eBooks (pp. 31-49). DOI: https://doi.org/10.1079/9781845931896.0031

Sahling, H., Römer, M., Pape, T., Bergès, B., Fereirra, C. D. S., Boelmann, J., Geprägs, P., Tomczyk, M., Nowald, N., Dimmler, W., Schroedter, L., Glockzin, M., & Bohrmann, G. (2014). Gas emissions at the continental margin west of Svalbard: mapping, sampling, and quantification. Biogeosciences, 11(21), 6029-6046. DOI: https://doi.org/10.5194/bg-11-6029-2014

Saklani, N., & Khurana, A. (2019). Global Warming: Effect on Living Organisms, Causes and its Solutions. International Journal of Engineering and Management Research, 9(5), 24-26. DOI: https://doi.org/10.31033/ijemr.9.5.4

Samset, B. H., Zhou, C., Fuglestvedt, J. S., Lund, M. T., Marotzke, J., & Zelinka, M. D. (2023). Steady global surface warming from 1973 to 2022 but increased warming rate after 1990. Communications Earth & Environment, 4(1). DOI: https://doi.org/10.1038/s43247-023-01061-4

Sanderson, M. G., Hemming, D. L., & Betts, R. A. (2010). Regional temperature and precipitation changes under high-end (≥4 ° C) global warming. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 369(1934), 85-98. DOI: https://doi.org/10.1098/rsta.2010.0283

Sayemuzzaman, M., & Jha, M. K. (2013). Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmospheric Research, 137, 183-194. DOI: https://doi.org/10.1016/j.atmosres.2013.10.012

Scaife, A., Guilyardi, E., Cain, M., & Gilbert, A. (2019). What is the El Niño-Southern Oscillation? Weather, 74(7), 250-251. DOI: https://doi.org/10.1002/wea.3404

Schwartz, S. E. (2018). Resource Letter GECC-1: The Greenhouse Effect and Climate Change: Earth’s Natural Greenhouse Effect. American Journal of Physics, 86(8), 565-576. DOI: https://doi.org/10.1119/1.5045574

Scotese, C. R., Song, H., Mills, B. J., & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. DOI: https://doi.org/10.1016/j.earscirev.2021.103503

Seager, R., Battisti, D. S., Yin, J., Gordon, N., Naik, N., Clement, A. C., & Cane, M. A. (2002). Is the Gulf Stream responsible for Europe’s mild winters? Quarterly Journal of the Royal Meteorological Society, 128(586), 2563-2586. DOI: https://doi.org/10.1256/qj.01.128

Seidov, D., Mishonov, A., Reagan, J., & Parsons, R. (2019). Resilience of the Gulf Stream path on decadal and longer timescales. Scientific Reports, 9(1). DOI: https://doi.org/10.1038/s41598-019-48011-9

Sellers, P. J., Schimel, D. S., Moore, B., Liu, J., & Eldering, A. (2018). Observing carbon cycle-climate feedbacks from space. Proceedings of the National Academy of Sciences, 115(31), 7860-7868. DOI: https://doi.org/10.1073/pnas.1716613115

Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., & Waple, A. (2001). Solar Forcing of Regional Climate Change During the Maunder Minimum. Science, 294(5549), 2149-2152. DOI: https://doi.org/10.1126/science.1064363

Sluijs, A., Van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., LeVay, L. J., Reichart, G., & Slomp, C. P. (2014). Warming, euxinia and sea level rise during the Paleocene-Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Climate of the Past, 10(4), 1421-1439. DOI: https://doi.org/10.5194/cp-10-1421-2014

Solanki, S. K., Krivova, N. A., & Haigh, J. D. (2013). Solar Irradiance Variability and Climate. Annual Review of Astronomy and Astrophysics, 51(1), 311-351. DOI: https://doi.org/10.1146/annurev-astro-082812-141007

Stern, N. (2022). A Time for Action on Climate Change and a Time for Change in Economics. The Economic Journal, 132(644), 1259-1289. DOI: https://doi.org/10.1093/ej/ueac005

Storey, M., Duncan, R. A., & Swisher, C. C. (2007). Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic. Science, 316(5824), 587-589. DOI: https://doi.org/10.1126/science.1135274

Stothers, R. B. (1989). Volcanic eruptions and solar activity. Journal of Geophysical Research Atmospheres, 94(B12), 17371-17381. DOI: https://doi.org/10.1029/jb094ib12p17371

Sun, F., Roderick, M. L., & Farquhar, G. D. (2018). Rainfall statistics, stationarity, and climate change. Proceedings of the National Academy of Sciences, 115(10), 2305-2310. DOI: https://doi.org/10.1073/pnas.1705349115

Takahashi, H. G. (2024). GPC/m: Global Precipitation Climatology by Machine Learning; Quasi-global, Daily, and One Degree Spatial Resolution. arXiv (Cornell University). DOI: https://doi.org/10.48550/arxiv.2409.09639

Tickell, C. (1993). Global warming: Trends and effects. Parasitology, 106(S1), S5-S9. DOI: https://doi.org/10.1017/s0031182000086078
Trenberth, K. E., Caron, J. M., Stepaniak, D. P., & Worley, S. (2002). Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. Journal of Geophysical Research Atmospheres, 107(D8). DOI: https://doi.org/10.1029/2000jd000298

Turkington, T., Timbal, B., & Rahmat, R. (2018). The impact of global warming on sea surface temperature based El Niño-Southern Oscillation monitoring indices. International Journal of Climatology, 39(2), 1092-1103. DOI: https://doi.org/10.1002/joc.5864
Understanding Earth’s deep past: lessons for our climate future. (2012). Choice Reviews Online, 49(07), 49-3883. DOI: https://doi.org/10.5860/choice.49-3883

Vecchi, G. A., & Wittenberg, A. T. (2010). El Niño and our future climate: where do we stand? Wiley Interdisciplinary Reviews Climate Change, 1(2), 260-270. DOI: https://doi.org/10.1002/wcc.33

Wang, B., Jhun, J., & Moon, B. (2007). Variability and Singularity of Seoul, South Korea, Rainy Season (1778-2004). Journal of Climate, 20(11), 2572-2580. DOI: https://doi.org/10.1175/jcli4123.1

Wang, G., Huang, R. X., Su, J., & Chen, D. (2012). The Effects of Thermohaline Circulation on Wind-Driven Circulation in the South China Sea. Journal of Physical Oceanography, 42(12), 2283-2296. DOI: https://doi.org/10.1175/jpo-d-11-0227.1

Wen, J. J., Yuan, J., Wu, S. H., & Han, T. Y. (2016). Gravity inequalities and the mean temperature on a planet. Journal of Inequalities and Applications, 2016(1). DOI: https://doi.org/10.1186/s13660-016-1195-9

White, M. C. (1994). National Aeronautics and Space Administration. Eos, 75(7), 74. DOI: https://doi.org/10.1029/94eo00779

Willett, H. C. (1949). Solar Variability as a Factor in the Fluctuations of Climate during Geological Time. Geografiska Annaler, 31, 295. DOI: https://doi.org/10.2307/520372

Winguth, A. M. E. (2011). The Paleocene-Eocene Thermal Maximum: Feedbacks Between Climate Change and Biogeochemical Cycles. In InTech eBooks. DOI: https://doi.org/10.5772/22994

Witkowski, C. R., Von Der Heydt, A. S., Valdes, P. J., Van Der Meer, M. T. J., Schouten, S., & Damsté, J. S. S. (2024). Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene. Nature Communications, 15(1), 5192. DOI: https://doi.org/10.1038/s41467-024-47676-9

Wolff, E. W., Shepherd, J. G., Shuckburgh, E., & Watson, A. J. (2015). Feedbacks on climate in the Earth system: introduction.
Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 373(2054), 20140428. DOI: https://doi.org/10.1098/rsta.2014.0428

Wong, T. E., Cui, Y., Royer, D. L., & Keller, K. (2021). A tighter constraint on Earth-system sensitivity from long-term temperature and carbon-cycle observations. Nature Communications, 12(1). DOI: https://doi.org/10.1038/s41467-021-23543-9

Woods, T. N., Harder, J. W., Kopp, G., & Snow, M. (2022). Solar-Cycle Variability Results from the Solar Radiation and Climate Experiment (SORCE) Mission. Solar Physics, 297(4). DOI: https://doi.org/10.1007/s11207-022-01980-z

Wunderling, N., Willeit, M., Donges, J. F., & Winkelmann, R. (2020). Global warming due to loss of large ice masses and Arctic summer sea ice. Nature Communications, 11(1). DOI: https://doi.org/10.1038/s41467-020-18934-3

Wunsch, C. (2002). What Is the Thermohaline Circulation? Science, 298(5596), 1179-1181. DOI: https://doi.org/10.1126/science.1079329
Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J., & Scheffer, M. (2020). Future of the human climate niche. Proceedings of the National Academy of Sciences, 117(21), 11350-11355. DOI: https://doi.org/10.1073/pnas.1910114117

Xu, Z., Ji, F., Liu, B., Feng, T., Gao, Y., He, Y., & Chang, F. (2021). Long‐term evolution of global sea surface temperature trend. International Journal of Climatology, 41(9), 4494-4508. DOI: https://doi.org/10.1002/joc.7082

Yan, X., Boyer, T., Trenberth, K., Karl, T. R., Xie, S., Nieves, V., Tung, K., & Roemmich, D. (2016). The global warming hiatus: Slowdown or redistribution? Earth S Future, 4(11), 472-482. DOI: https://doi.org/10.1002/2016ef000417

Yeh, S., Kug, J., Dewitte, B., Kwon, M., Kirtman, B. P., & Jin, F. (2009). El Niño in a changing climate. Nature, 461(7263), 511-514. DOI: https://doi.org/10.1038/nature08316

Zachos, J. C., RöHl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., & Kroon, D. (2005). Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science, 308(5728), 1611-1615. DOI: https://doi.org/10.1126/science.1109004

Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., & Premoli-Silva, I. (2003). A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum. Science, 302(5650), 1551-1554. DOI: https://doi.org/10.1126/science.1090110

Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517), 686-693. DOI: https://doi.org/10.1126/science.1059412

Zanchettin, D. (2023). Volcanic Eruptions: A Source of Irreducible Uncertainty for Future Climates. Geophysical Research Letters, 50(17). DOI: https://doi.org/10.1029/2023gl105482

Zhang, T., Stackhouse, P. W., Gupta, S. K., Cox, S. J., Mikovitz, J. C., & Hinkelman, L. M. (2012). The validation of the GEWEX SRB surface shortwave flux data products using BSRN measurements: A systematic quality control, production and application approach. Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 127-140. DOI: https://doi.org/10.1016/j.jqsrt.2012.10.004

Zhang, Z., Pan, Z., Pan, F., Zhang, J., Han, G., Huang, N., Wang, J., Pan, Y., Wang, Z., & Peng, R. (2020). The Change Characteristics and Interactions of Soil Moisture and Temperature in the Farmland in Wuchuan County, Inner Mongolia, China. Atmosphere, 11(5), 503. DOI: https://doi.org/10.3390/atmos11050503

Zickfeld, K., Eby, M., Matthews, H. D., & Weaver, A. J. (2009). Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proceedings of the National Academy of Sciences, 106(38), 16129-16134. DOI: https://doi.org/10.1073/pnas.0805800106

Zielinski, G. A. (2002). Climatic Impact of Volcanic Eruptions. The Scientific World JOURNAL, 2, 869-884. DOI: https://doi.org/10.1100/tsw.2002.83
How to Cite
Hoffman, P. J., & Lee, M. (2024). Global Mean Surface Temperature: What Can We Learn from the Trajectory over a Millions-year Span?. Science Insights, 45(5), 1635–1647. https://doi.org/10.15354/si.24.re1097
Section
Review