The Boundaries of Gravitational Wave: How Far Could We Reach?
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Advanced scientific instruments have recently detected gravitational waves, which were predicted by Albert Einstein in his general theory of relativity. Astronomers are afforded a novel method of investigating and comprehending the cosmos because of these ripples in spacetime, which convey information regarding the movements of colossal objects in the universe. Nevertheless, the sensitivity of current detectors, such as LIGO and Virgo, is restricted to a maximum distance of several billion light-years, which limits their detection. Future technological advancements and the development of more sensitive, larger detectors hold the potential to detect gravitational waves from even greater distances in the future, despite this constraint. Scientists aspire to uncover new secrets about our universe and potentially detect gravitational waves from the edge of the observable universe by pushing the boundaries of what is currently feasible.
##plugins.themes.bootstrap3.article.details##
Gravitational Wave, Universe; Signal Detector, Boundaries, Galaxies
No funding source declared.
Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6). DOI: https://doi.org/10.1103/physrevlett.116.061102
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., Affeldt, C., Afrough, M., Agarwal, B., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., . . . Zweizig, J. (2017).
GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 119(14). DOI: https://doi.org/10.1103/physrevlett.119.141101
Abramovici, A., Althouse, W. E., Drever, R. W. P., Gürsel, Y., Kawamura, S., Raab, F. J., Shoemaker, D., Sievers, L., Spero, R. E., Thorne, K. S., Vogt, R. E., Weiss, R., Whitcomb, S. E., & Zucker, M. E. (1992). LIGO: The Laser Interferometer Gravitational-Wave Observatory. Science, 256(5055), 325–333. DOI: https://doi.org/10.1126/science.256.5055.325
Bandopadhyay, A., Kacanja, K., Somasundaram, R., Nitz, A. H., & Brown, D. (2024). Measuring neutron star radius with second and third generation gravitational wave detector networks. Classical and Quantum Gravity. DOI: https://doi.org/10.1088/1361-6382/ad828a
Baym, G., Patil, S. P., & Pethick, C. J. (2017). Damping of gravitational waves by matter. Physical Review. D/Physical Review. D., 96(8). DOI: https://doi.org/10.1103/physrevd.96.084033
Calcagni, G., Kuroyanagi, S., Marsat, S., Sakellariadou, M., Tamanini, N., & Tasinato, G. (2019). Quantum gravity and gravitational-wave astronomy. Journal of Cosmology and Astroparticle Physics, 2019(10), 012. DOI: https://doi.org/10.1088/1475-7516/2019/10/012
Corsi, A., Barsotti, L., Berti, E., Evans, M., Gupta, I., Kritos, K., Kuns, K., Nitz, A. H., Owen, B. J., Rajbhandari, B., Read, J., Sathyaprakash, B. S., Shoemaker, D. H., Smith, J. R., & Vitale, S. (2024). Multi-messenger astrophysics of black holes and neutron stars as probed by ground-based gravitational wave detectors: from present to future. Frontiers in Astronomy and Space Sciences, 11. DOI: https://doi.org/10.3389/fspas.2024.1386748
Dergachev, V., & Papa, M. A. (2024). Early release of the expanded atlas of the sky in continuous gravitational waves. Physical Review. D/Physical Review. D., 109(2). DOI: https://doi.org/10.1103/physrevd.109.022007
Domènech, G., & Sasaki, M. (2024). Probing Primordial Black Hole Scenarios with Terrestrial Gravitational Wave Detectors. Classical and Quantum Gravity, 41(14), 143001. DOI: https://doi.org/10.1088/1361-6382/ad5488
Einstein, A., & Rosen, N. (1937). On gravitational waves. Journal of the Franklin Institute, 223(1), 43–54. DOI: https://doi.org/10.1016/s0016-0032(37)90583-0
Flanagan, É. É., & Hughes, S. A. (2005). The basics of gravitational wave theory. New Journal of Physics, 7, 204. DOI: https://doi.org/10.1088/1367-2630/7/1/204
Gair, J. R. (2014). The Scientific Potential of Space-Based Gravitational Wave Detectors. In Astrophysics and space science proceedings (pp. 225–243). DOI: https://doi.org/10.1007/978-3-319-10488-1_20
Giovannini, M. (2023). Relic gravitons and high-frequency detectors. Journal of Cosmology and Astroparticle Physics, 2023(05), 056. DOI: https://doi.org/10.1088/1475-7516/2023/05/056
Gladyshev, V., & Fomin, I. (2019). The Early Universe as a Source of Gravitational Waves. In IntechOpen eBooks. DOI: https://doi.org/10.5772/intechopen.87946
Grishchuk, L. P. (2003). The early universe odyssey with gravitational waves. In 2001: A Relativistic Spacetime Odyssey: Experiments and Theoretical Viewpoints on General Relativity and Quantum Gravity. Proceedings of the 25th Johns Hopkins Workshop on Current Problems in Particle Theory, Firenze, Italy, 3 – 5 September 2001. DOI: https://doi.org/10.1142/9789812791368_0013
Hogan, C. J. (2007). Sounding out the Big Bang. Physics World, 20(6), 20–26. DOI: https://doi.org/10.1088/2058-7058/20/6/32
Huerta, E. A., Khan, A., Huang, X., Tian, M., Levental, M., Chard, R., Wei, W., Heflin, M., Katz, D. S., Kindratenko, V., Mu, D., Blaiszik, B., & Foster, I. (2021). Accelerated, scalable and reproducible AI-driven gravitational wave detection. Nature Astronomy, 5(10), 1062–1068. DOI: https://doi.org/10.1038/s41550-021-01405-0
Kalogera, V., Berry, C. P. L., Colpi, M., Fairhurst, S., Justham, S., Mandel, I., Mangiagli, A., Mapelli, M., Mills, C., Sathyaprakash, B., Schneider, R., Tauris, T., & Valiante, R. (2019, May 31). Deeper, Wider, Sharper: Next-Generation Ground-based Gravitational-Wave Observations of Binary Black Holes. Bulletin of the AAS. https://baas.aas.org/pub/2020n3i242
Lee, H. M. (2018). Long Journey toward the Detection of Gravitational Waves and New Era of Gravitational Wave Astrophysics. Journal of the Korean Physical Society, 73(6), 684–700. DOI: https://doi.org/10.3938/jkps.73.684
Mitra, A., Shukirgaliyev, B., Abylkairov, Y. S., & Abdikamalov, E. (2023). Exploring supernova gravitational waves with machine learning. Monthly Notices of the Royal Astronomical Society, 520(2), 2473–2483. DOI: https://doi.org/10.1093/mnras/stad169
Moore, C. J., Cole, R. H., & Berry, C. P. L. (2014). Gravitational-wave sensitivity curves. Classical and Quantum Gravity, 32(1), 015014. DOI: https://doi.org/10.1088/0264-9381/32/1/015014
Mukherjee, S. (2024). A New Gravitational Wave Probe to the Nature of Dark Energy from the Aging of the Universe: Can Future Detectors Achieve it? arXiv (Cornell University). DOI: https://doi.org/10.48550/arxiv.2406.17041
Nousi, P., Koloniari, A. E., Passalis, N., Iosif, P., Stergioulas, N., & Tefas, A. (2023). Deep residual networks for gravitational wave detection. Physical Review. D/Physical Review. D., 108(2). DOI: https://doi.org/10.1103/physrevd.108.024022
Recami, E., Zamboni-Rached, M., Nobrega, K., Dartora, C., & F, H. H. (2003). On the localized superluminal solutions to the maxwell equations. IEEE Journal of Selected Topics in Quantum Electronics, 9(1), 59–73. DOI: https://doi.org/10.1109/jstqe.2002.808194
Riles, K. (2012). Gravitational waves: Sources, detectors and searches. Progress in Particle and Nuclear Physics, 68, 1–54. DOI: https://doi.org/10.1016/j.ppnp.2012.08.001
Sathyaprakash, B. S. (2001). The gravitational wave symphony of the Universe. Pramana, 56(4), 457–475. DOI: https://doi.org/10.1007/s12043-001-0096-7
Sathyaprakash, B. S., & Schutz, B. F. (2009). Physics, Astrophysics and Cosmology with Gravitational Waves. Deleted Journal, 12(1). DOI: https://doi.org/10.12942/lrr-2009-2
Schutz, B. F. (1989). Gravitational wave sources and their detectability. Classical and Quantum Gravity, 6(12), 1761–1780. DOI: https://doi.org/10.1088/0264-9381/6/12/006
Thorne, K. S. (1997). Gravitational Radiation - a New Window onto the Universe. (Karl Schwarzschild Lecture 1996). Reviews in Modern Astronomy, 10, 1–18. Available at: http://ui.adsabs.harvard.edu/abs/1997RvMA.10.1T/abstract
Unnikrishnan, C. S., & Gillies, G. T. (2018). Gravitational waves at their own gravitational speed. International Journal of Modern Physics D, 27(14), 1847015. DOI: https://doi.org/10.1142/s0218271818470156
Vitale, S. (2021). The first 5 years of gravitational-wave astrophysics. Science, 372(6546). DOI: https://doi.org/10.1126/science.abc7397
Wette, K. (2023). Searches for continuous gravitational waves from neutron stars: A twenty-year retrospective. Astroparticle Physics, 153, 102880. DOI: https://doi.org/10.1016/j.astropartphys.2023.102880
Yu, H., Martynov, D., Vitale, S., Evans, M., Shoemaker, D., Barr, B., Hammond, G., Hild, S., Hough, J., Huttner, S., Rowan, S., Sorazu, B., Carbone, L., Freise, A., Mow-Lowry, C., Dooley, K. L., Fulda, P., Grote, H., & Sigg, D. (2018). Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors. Physical Review Letters, 120(14). DOI: https://doi.org/10.1103/physrevlett.120.141102
Yunes, N., & Siemens, X. (2013). Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays. Deleted Journal, 16(1). DOI: https://doi.org/10.12942/lrr-2013-9
Zhao, W., & Zhang, Y. (2006). Relic gravitational waves and their detection. Physical Review. D. Particles, Fields, Gravitation, and Cosmology/Physical Review. D, Particles, Fields, Gravitation, and Cosmology, 74(4). DOI: https://doi.org/10.1103/physrevd.74.043503

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.