##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Feb 28, 2022

Dublin Nashin  

Abstract

The gut microbiota is vast and diverse, and it is inextricably linked to and interacts with the host. Numerous diseases are associated with the gut microbiota of their occurrence, progression, and prognosis. The gut microbiota has an effect on the occurrence and progression of metabolic diseases through regulating the metabolism of carbohydrates, lipids, and amino acids. Disruptions in the intestinal flora can also contribute to inflammatory bowel disease and certain types of intestinal cancer. Additionally, illnesses of the neuropsychiatric, cardiovascular, and urinary systems, among others, are all associated with the gut microbiota. It is vital to understand the link between gut microbiota and disease in order to prevent, cure, and maintain good health.

##plugins.themes.bootstrap3.article.details##

Keywords

Gut Microbiota, Metabolic Diseases, Inflammatory Bowel Disease, Neuronal Dysfunction, Cardiovascular Diseases

References
1. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci 2019; 76(3):473-493. DOI: https://doi.org/10.1007/s00018-018-2943-4

2. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek 2020; 113(12):2019-2040. DOI: https://doi.org/10.1007/s10482-020-01474-7

3. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012; 9(10):577-589. DOI: https://doi.org/10.1038/nrgastro.2012.156

4. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ 2018; 361:k2179. DOI: https://doi.org/10.1136/bmj.k2179

5. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain axis. Physiol Rev 2019; 99(4):1877-2013. DOI: https://doi.org/10.1152/physrev.00018.2018

6. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res 2020; 127(4):553-570. DOI: https://doi.org/10.1161/circresaha.120.316242

7. Pascale A, Marchesi N, Marelli C, Coppola A, Luzi L, Govoni S, Giustina A, Gazzaruso C. Microbiota and metabolic diseases. Endocrine 2018; 61(3):357-371. DOI: https://doi.org/10.1007/s12020-018-1605-5

8. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021; 19(1):55-71. DOI: https://doi.org/10.1038/s41579-020-0433-9

9. Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr 2016; 63(10):560-568. DOI: https://doi.org/10.1016/j.endonu.2016.07.008. Erratum in: Endocrinol Diabetes Nutr 2017; 64(9):514.

10. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51:102590. DOI: https://doi.org/10.1016/j.ebiom.2019.11.051

11. Tanase DM, Gosav EM, Neculae E, Costea CF, Ciocoiu M, Hurjui LL, Tarniceriu CC, Maranduca MA, Lacatusu CM, Floria M, Serban IL. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients 2020; 12(12):3719. DOI: https://doi.org/10.3390/nu12123719

12. Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L, Chen Y, van Endert P, Agerberth B, Diana J. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 2015; 43(2):304-317. DOI: https://doi.org/10.1016/j.immuni.2015.07.013

13. Grasset E, Puel A, Charpentier J, Collet X, Christensen JE, Tercé F, Burcelin R. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metab 2017; 25(5):1075-1090.e5. DOI: https://doi.org/10.1016/j.cmet.2017.04.013. Erratum in: Cell Metab 2017; 26(1):278.

14. Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B, Zhang S, Yun C, Lian G, Zhang X, Zhang H, Bisson WH, Shi J, Gao X, Ge P, Liu C, Krausz KW, Nichols RG, Cai J, Rimal B, Patterson AD, Wang X, Gonzalez FJ, Jiang C. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018; 24(12):1919-1929. DOI: https://doi.org/10.1038/s41591-018-0222-4

15. Aron-Wisnewsky J, Clément K, Nieuwdorp M. Fecal microbiota transplantation: A future therapeutic option for obesity/diabetes? Curr Diab Rep 2019; 19(8):51. DOI: https://doi.org/10.1007/s11892-019-1180-z

16. Wang H, Lu Y, Yan Y, Tian S, Zheng D, Leng D, Wang C, Jiao J, Wang Z, Bai Y. Promising Treatment for Type 2 Diabetes: Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Front Cell Infect Microbiol 2020; 9:455. DOI: https://doi.org/10.3389/fcimb.2019.00455

17. Zhang PP, Li LL, Han X, Li QW, Zhang XH, Liu JJ, Wang Y. Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice. Acta Pharmacol Sin 2020; 41(5):678-685. DOI: https://doi.org/10.1038/s41401-019-0330-9

18. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016; 7(3):189-200. DOI: https://doi.org/10.1080/19490976.2015.1134082

19. Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care 2015; 18(5):515-520. DOI: https://doi.org/10.1097/mco.0000000000000209

20. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of the literature. J Obes 2016; 2016:7353642. DOI: https://doi.org/10.1155/2016/7353642

21. Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O'Toole PW, Cotter PD. The gut microbiota and its relationship to diet and obesity: New insights. Gut Microbes 2012; 3(3):186-202. DOI: https://doi.org/10.4161/gmic.20168

22. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. The Firmicutes/Bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020; 12(5):1474. DOI: https://doi.org/10.3390/nu12051474

23. Ellekilde M, Selfjord E, Larsen CS, Jakesevic M, Rune I, Tranberg B, Vogensen FK, Nielsen DS, Bahl MI, Licht TR, Hansen AK, Hansen CH. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci Rep 2014; 4:5922. DOI: https://doi.org/10.1038/srep05922

24. Nicolas S, Blasco-Baque V, Fournel A, Gilleron J, Klopp P, Waget A, Ceppo F, Marlin A, Padmanabhan R, Iacovoni JS, Tercé F, Cani PD, Tanti JF, Burcelin R, Knauf C, Cormont M, Serino M. Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Mol Syst Biol 2017; 13(3):921. DOI: https://doi.org/10.15252/msb.20167356

25. Trinh KY, O'Doherty RM, Anderson P, Lange AJ, Newgard CB. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem 1998; 273(47):31615-31620. DOI: https://doi.org/10.1074/jbc.273.47.31615

26. Aoun A, Darwish F, Hamod N. the influence of the gut microbiome on obesity in adults and the role of probiotics, prebiotics, and synbiotics for weight loss. Prev Nutr Food Sci 2020; 25(2):113-123. DOI: https://doi.org/10.3746/pnf.2020.25.2.113

27. Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, Wang G, Xia B. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol 2014; 52(2):398-406. DOI: https://doi.org/10.1128/jcm.01500-13

28. Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, Gil A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: A systematic review of randomized human clinical trials. Biomed Res Int 2015; 2015:505878. DOI: https://doi.org/10.1155/2015/505878

29. Goyal A, Yeh A, Bush BR, Firek BA, Siebold LM, Rogers MB, Kufen AD, Morowitz MJ. Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease. Inflamm Bowel Dis 2018; 24(2):410-421. DOI: https://doi.org/10.1093/ibd/izx035

30. Park SY, Seo GS. Fecal microbiota transplantation: Is it safe? Clin Endosc 2021; 54(2):157-160. DOI: https://doi.org/10.5946/ce.2021.072

31. Liu SX, Li YH, Dai WK, Li XS, Qiu CZ, Ruan ML, Zou B, Dong C, Liu YH, He JY, Huang ZH, Shu SN. Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment. World J Gastroenterol 2017; 23(48):8570-8581. DOI: https://doi.org/10.3748/wjg.v23.i48.8570

32. Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Front Immunol 2017; 8:942. DOI: https://doi.org/10.3389/fimmu.2017.00942

33. Shen ZH, Zhu CX, Quan YS, Yang ZY, Wu S, Luo WW, Tan B, Wang XY. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 2018; 24(1):5-14. DOI: https://doi.org/10.3748/wjg.v24.i1.5

34. Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019; 8(3):126. DOI: https://doi.org/10.3390/pathogens8030126
35. Jonkers D, Stockbrügger R. Probiotics and inflammatory bowel disease. J R Soc Med 2003; 96(4):167-171.

36. Jakubczyk D, Leszczyńska K, Górska S. the effectiveness of probiotics in the treatment of inflammatory bowel disease (IBD)-A critical review. Nutrients 2020; 12(7):1973. DOI: https://doi.org/10.3390/nu12071973

37. Karakan T, Ozkul C, Küpeli Akkol E, Bilici S, Sobarzo-Sánchez E, Capasso R. Gut-brain-microbiota axis: antibiotics and functional gastrointestinal disorders. Nutrients 2021; 13(2):389. DOI: https://doi.org/10.3390/nu13020389

38. Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, Qin S, Wang R, Jin F, Kitazato K, Wang Y. The gut-microglia connection: implications for central nervous system diseases. Front Immunol 2018; 9:2325. DOI: https://doi.org/10.3389/fimmu.2018.02325

39. Jacobson A, Yang D, Vella M, Chiu IM. The intestinal neuro-immune axis: Crosstalk between neurons, immune cells, and microbes. Mucosal Immunol 2021; 14(3):555-565. DOI: https://doi.org/10.1038/s41385-020-00368-1

40. Yu CD, Xu QJ, Chang RB. Vagal sensory neurons and gut-brain signaling. Curr Opin Neurobiol 2020; 62:133-140. DOI: https://doi.org/10.1016/j.conb.2020.03.006

41. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 2018; 9:44. DOI: https://doi.org/10.3389/fpsyt.2018.00044

42. Appleton J. The gut-brain axis: Influence of microbiota on mood and mental health. Integr Med (Encinitas) 2018; 17(4):28-32.

43. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2):203-209. Erratum in: Ann Gastroenterol 2016; 29(2):240.

44. Szeligowski T, Yun AL, Lennox BR, Burnet PWJ. The gut microbiome and schizophrenia: The current state of the field and clinical applications. Front Psychiatry 2020; 11:156. DOI: https://doi.org/10.3389/fpsyt.2020.00156

45. Haikal C, Chen QQ, Li JY. Microbiome changes: An indicator of Parkinson's disease? Transl Neurodegener 2019; 8:38. DOI: https://doi.org/10.1186/s40035-019-0175-7

46. Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut microbiome and brain function. Nutr Rev 2018; 76(7):481-496. DOI: https://doi.org/10.1093/nutrit/nuy009

47. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J Neuroinflammation 2019 Mar 1; 16(1):53. DOI: https://doi.org/10.1186/s12974-019-1434-3

48. Kelly JR, Borre Y, O' Brien C, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; 82:109-118. DOI: https://doi.org/10.1016/j.jpsychires.2016.07.019

49. Knudsen JK, Michaelsen TY, Bundgaard-Nielsen C, Nielsen RE, Hjerrild S, Leutscher P, Wegener G, Sørensen S. Faecal microbiota transplantation from patients with depression or healthy individuals into rats modulates mood-related behaviour. Sci Rep 2021; 11(1):21869. DOI: https://doi.org/10.1038/s41598-021-01248-9

50. Tognini P. Gut microbiota: A potential regulator of neurodevelopment. Front Cell Neurosci 2017; 11:25. DOI: https://doi.org/10.3389/fncel.2017.00025

51. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer's disease. J Alzheimers Dis 2017; 58(1):1-15. DOI: https://doi.org/10.3233/jad-161141

52. Giau VV, Wu SY, Jamerlan A, An SSA, Kim SY, Hulme J. Gut microbiota and their neuroinflammatory implications in Alzheimer's disease. Nutrients 2018; 10(11):1765. DOI: https://doi.org/10.3390/nu10111765

53. Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sci 2021; 264:118627. DOI: https://doi.org/10.1016/j.lfs.2020.118627

54. Brenner D, Shorten GD, O'Mahony SM. Postoperative pain and the gut microbiome. Neurobiol Pain 2021; 10:100070. DOI: https://doi.org/10.1016/j.ynpai.2021.100070

55. Guo R, Chen LH, Xing C, Liu T. Pain regulation by gut microbiota: Molecular mechanisms and therapeutic potential. Br J Anaesth 2019; 123(5):637-654. DOI: https://doi.org/10.1016/j.bja.2019.07.026

56. Lin C, Cai X, Zhang J, Wang W, Sheng Q, Hua H, Zhou X. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion 2019; 100(1):72-78. DOI: https://doi.org/10.1159/000494052

57. Zhou H, Yuan Y, Wang H, Xiang W, Li S, Zheng H, Wen Y, Ming Y, Chen L, Zhou J. Gut microbiota: A potential target for cancer interventions. Cancer Manag Res 2021; 13:8281-8296. DOI: https://doi.org/10.2147/CMAR.S328249

58. Li L, Li X, Zhong W, Yang M, Xu M, Sun Y, Ma J, Liu T, Song X, Dong W, Liu X, Chen Y, Liu Y, Abla Z, Liu W, Wang B, Jiang K, Cao H. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apcmin/+ mice. EBioMedicine 2019; 48:301-315. DOI: https://doi.org/10.1016/j.ebiom.2019.09.021. Erratum in: EBioMedicine 2020; 53:102680.

59. Wu JS. Rectal cancer staging. Clin Colon Rectal Surg 2007; 20(3):148-157. DOI: https://doi.org/10.1055/s-2007-984859

60. Kinross J, Mirnezami R, Alexander J, Brown R, Scott A, Galea D, Veselkov K, Goldin R, Darzi A, Nicholson J, Marchesi JR. A prospective analysis of mucosal microbiome-metabonome interactions in colorectal cancer using a combined MAS 1HNMR and metataxonomic strategy. Sci Rep 2017; 7(1):8979. DOI: https://doi.org/10.1038/s41598-017-08150-3

61. Papagiorgis PC, Zizi AE, Tseleni S, Oikonomakis IN, Nikiteas NI. Clinicopathological differences of colorectal cancers according to tumor origin: Identification of possibly de novo lesions. Biomed Rep 2013; 1(1):97-104. DOI: https://doi.org/10.3892/br.2012.17

62. Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017; 14(9):527-539. DOI: https://doi.org/10.1038/nrgastro.2017.72

63. Li Q, Jin M, Liu Y, Jin L. Gut microbiota: Its potential roles in pancreatic cancer. Front Cell Infect Microbiol 2020; 10:572492. DOI: https://doi.org/10.3389/fcimb.2020.572492

64. Laborda-Illanes A, Sanchez-Alcoholado L, Dominguez-Recio ME, Jimenez-Rodriguez B, Lavado R, Comino-Méndez I, Alba E, Queipo-Ortuño MI. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers (Basel) 2020; 12(9):2465. DOI: https://doi.org/10.3390/cancers12092465

65. Wang X, Zhang P, Zhang X. Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules 2021; 26(19):6076. DOI: https://doi.org/10.3390/molecules26196076

66. Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel) 2019; 11(1):38. DOI: https://doi.org/10.3390/cancers11010038

67. Iyer C, Kosters A, Sethi G, Kunnumakkara AB, Aggarwal BB, Versalovic J. Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling. Cell Microbiol 2008; 10(7):1442-1452. DOI: https://doi.org/10.1111/j.1462-5822.2008.01137.x

68. Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 2015; 66:343-359. DOI: https://doi.org/10.1146/annurev-med-060513-093205

69. Wang B, Qiu J, Lian J, Yang X, Zhou J. Gut metabolite trimethylamine-N-oxide in atherosclerosis: From mechanism to therapy. Front Cardiovasc Med 2021; 8:723886. DOI: https://doi.org/10.3389/fcvm.2021.723886

70. Avery EG, Bartolomaeus H, Maifeld A, Marko L, Wiig H, Wilck N, Rosshart SP, Forslund SK, Müller DN. The gut microbiome in hypertension: Recent advances and future perspectives. Circ Res 2021; 128(7):934-950. DOI: https://doi.org/10.1161/circresaha.121.318065

71. Louca P, Nogal A, Wells PM, Asnicar F, Wolf J, Steves CJ, Spector TD, Segata N, Berry SE, Valdes AM, Menni C. Gut microbiome diversity and composition is associated with hypertension in women. J Hypertens 2021; 39(9):1810-1816. DOI: https://doi.org/10.1097/hjh.0000000000002878

72. Pluznick JL. Microbial short-chain fatty acids and blood pressure regulation. Curr Hypertens Rep 2017; 19(4):25. DOI: https://doi.org/10.1007/s11906-017-0722-5

73. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR, Kaye DM. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 2017; 135(10):964-977. DOI: https://doi.org/10.1161/circulationaha.116.024545

74. Beale AL, O'Donnell JA, Nakai ME, Nanayakkara S, Vizi D, Carter K, Dean E, Ribeiro RV, Yiallourou S, Carrington MJ, Marques FZ, Kaye DM. The gut microbiome of heart failure with preserved ejection fraction. J Am Heart Assoc 2021; 10(13):e020654. DOI: https://doi.org/10.1161/jaha.120.020654

75. Ahmad AF, Ward NC, Dwivedi G. The gut microbiome and heart failure. Curr Opin Cardiol 2019; 34(2):225-232. DOI: https://doi.org/10.1097/hco.0000000000000598

76. Branchereau M, Burcelin R, Heymes C. The gut microbiome and heart failure: A better gut for a better heart. Rev Endocr Metab Disord 2019; 20(4):407-414. DOI: https://doi.org/10.1007/s11154-019-09519-7

77. Tang R, Jiang Y, Tan A, Ye J, Xian X, Xie Y, Wang Q, Yao Z, Mo Z. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis 2018; 46(6):503-514. DOI: https://doi.org/10.1007/s00240-018-1037-y

78. Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: A systematic review of the literature. BMC Nephrol 2020; 21(1):215. DOI: https://doi.org/10.1186/s12882-020-01805-w

79. Kwong EK, Puri P. Gut microbiome changes in nonalcoholic fatty liver disease & alcoholic liver disease. Transl Gastroenterol Hepatol 2021; 6:3. DOI: https://doi.org/10.21037/tgh.2020.02.18

80. Lee NY, Suk KT. The role of the gut microbiome in liver cirrhosis treatment. Int J Mol Sci 2020; 22(1):199. DOI: https://doi.org/10.3390/ijms22010199
How to Cite
Nashin, D. (2022). A Narrative Review of the Gut Microbiota and Its Association with Diseases. Science Insights, 40(3), 435–441. https://doi.org/10.15354/si.22.re016
Section
Review