##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Apr 30, 2022

Tammy Jing  

Abstract

Cholesteric liquid crystal materials with selective reflection characteristics are used in a variety of applications due to their unique optical properties, including liquid crystal photovoltaic panels, light enhancement films, liquid crystal dimming glass, liquid crystal dimming films, laser protection, and infrared stealth. At the moment, researchers have offered a variety of effective strategies for extending the range of reflection. The reflection wavelength of the cholesteric phase has been effectively widened through the investigation of each material system, laying the groundwork for the practical application of cholesteric phase liquid crystal materials.

##plugins.themes.bootstrap3.article.details##

Keywords

Cholesteric Phase, Liquid Crystal, Selective Reflection, Application

References
1. Andrienko D. Introduction to liquid crystals. J Mol Liq 2018; 267:520-541. DOI: https://doi.org/10.1016/j.molliq.2018.01.175

2. Wang Y, Liu J, Yang S. Multi-functional liquid crystal elastomer composites. Appl Phys Rev 2022; 9:011301. DOI: https://doi.org/10.1063/5.0075471

3. Mitov M. Cholesteric liquid crystals with a broad light reflection band. Adv Mater 2012; 24(47):6260-6276. DOI: https://doi.org/10.1002/adma.201202913

4. Ryabchun A, Bobrovsky A. Cholesteric liquid crystal materials for tunable diffractive optics. Adv Opt Mater 2018; 6:1800335. DOI: https://doi.org/10.1002/adom.201800335

5. Grzelczyk D, Awrejcewicz J. Reflectivity of cholesteric liquid crystals with an anisotropic defect layer inside. Photonics 2020; 7(3):58. DOI: https://doi.org/10.3390/photonics7030058

6. Broer DJ, Mol GN, Haaren, van JAMM, Lub J. Photo-induced diffusion in polymerizing chiral-nematic media. Adv Mater 1999; 11(7):573-578.

7. Kim DY, Lee KM, White TJ, Jeong KU. Cholesteric liquid crystal paints: In situ photopolymerization of helicoidally stacked multilayer nanostructures for flexible broadband mirrors. NPG Asia Mater 2018; 10:1061-1068. DOI: https://doi.org/10.1038/s41427-018-0096-4

8. Lovell PA, Schork FJ. Fundamentals of emulsion polymerization. Biomacromolecules 2020; 21(11):4396-4441. DOI: https://doi.org/10.1021/acs.biomac.0c00769

9. Wang J, Pinkse PWH, Segerink LI, Eijkel JCT. Bottom-up assembled photonic crystals for structure-enabled label-free sensing. ACS Nano 2021; 15(6):9299-9327. DOI: https://doi.org/10.1021/acsnano.1c02495

10. Ryabchun A, Raguzin I, Stumpe J, Shibaev V, Bobrovsky A. Cholesteric polymer scaffolds filled with azobenzene-containing nematic mixture with phototunable optical properties. ACS Appl Mater Interf 2016 8(40):27227-27235. DOI: https://doi.org/10.1021/acsami.6b09642

11. Kularatne RS, Kim H, Boothby JM, Ware TH. Liquid crystal elastomer actuators: Synthesis, alignment, and applications. J Polym Sci Part B Polym Phys 2017; 55:395-411. DOI: https://doi.org/10.1002/polb.24287

12. Kralik JC, Fan B, Vithana H, Li L, Faris SM. Backlight output enhancement using cholesteric liquid crystal films. Mol Cryst Liq Cryst 1997; 301(1):249-254, DOI: https://doi.org/10.1080/10587259708041774

13. Varanytsia A, Nagai H, Urayama K, Palffy-Muhoray P. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain. Sci Rep 2015; 5:17739. DOI: https://doi.org/10.1038/srep17739

14. Lesiak P, Bednarska K, Lewandowski W, Wojcik M, Polakiewicz S, Bagiński M, Osuch T, Markowski K, Orzechowski K, Makowski M, Bolek J, Woliński TR. Self-organized, one-dimensional periodic structures in a gold nanoparticle-doped nematic liquid crystal composite. ACS Nano 2019 13(9):10154-10160. DOI: https://doi.org/10.1021/acsnano.9b03302

15. Wu Y, Wang K, Huang S, Yang C, Wang M. Near-infrared light-responsive semiconductor polymer composite hydrogels: Spatial/temporal-controlled release via a photothermal “sponge” effect. ACS Appl Mater Interf 2017; 9(15):13602-13610. DOI: https://doi.org/10.1021/acsami.7b01016

16. Kim J, Kim H, Kim S, Choi S, Jang W, Kim J, Lee J, Broadening the reflection bandwidth of polymer-stabilized cholesteric liquid crystal via a reactive surface coating layer. Appl Opt 2017; 56:5731-5735. DOI: https://doi.org/10.1364/AO.56.005731
How to Cite
Jing, T. (2022). Selective Reflection of Cholesteric Liquid Crystals. Science Insights, 40(5), 515–517. https://doi.org/10.15354/si.22.re051
Section
Mini Review