##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 30, 2022

Alexandre Rahman  

Abstract

The issue of heavy metal soil pollution has risen to the forefront. In addition to harming the pedosphere as a whole, soil pollution also has an impact on other significant sectors, such as air and water pollution. The two primary categories of pollution sources are natural sources and man-made sources. Mainly Hg, Cd, Pb, Cr, As, Zn, Cu, Ni, and other heavy metals are involved. The safety of agricultural products and the proper growth of people are of utmost importance. Thus, the origins of soil heavy metal pollution, the state of soil remediation research, and the development of soil heavy metal pollution remediation technology are all covered in this review. The technologies currently employed in soil heavy metal pollution remediation primarily include physical remediation, chemical restoration, bioremediation, agroecological restoration, and joint restoration. These methods are described, along with the conditions under which they can be used, application examples, and an analysis of their benefits and drawbacks. The most popular restoration technique is bioremediation.

##plugins.themes.bootstrap3.article.details##

Keywords

Soil, Heavy Metal, Pollution, Remediation, Sustainability

References
1. Singh B, Schulze DG. Soil Minerals and Plant Nutrition. Nat Educ Knowledge 2015; 6(1):1-10.

2. Steffan JJ, Brevik EC, Burgess LC, Cerdà A. The effect of soil on human health: an overview. Eur J Soil Sci 2018; 69(1):159-171. DOI: https://doi.org/10.1111/ejss.12451

3. Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E. Soil and the intensification of agriculture for global food security. Environ Int 2019; 132:105078. DOI: https://doi.org/10.1016/j.envint.2019.105078

4. Aendo P, Netvichian R, Thiendedsakul P, Khaodhiar S, Tulayakul P. Carcinogenic risk of Pb, Cd, Ni, and Cr and critical ecological risk of Cd and Cu in soil and groundwater around the municipal solid waste open dump in Central Thailand. J Environ Public Health 2022; 2022:3062215. DOI: https://doi.org/10.1155/2022/3062215

5. Kubier A, Wilkin RT, Pichler T. Cadmium in soils and groundwater: A review. Appl Geochem 2019; 108:1-16. DOI: https://doi.org/10.1016/j.apgeochem.2019.104388

6. Masindi V, Muedi KL. Environmental Contamination by Heavy Metals. In: Saleh, H.E. M., Aglan, R.F., editors. Heavy Metals. London: IntechOpen; DOI: https://doi.org/10.5772/intechopen.76082

7. Food and Agriculture Organization of the United States. Polluting our soils is polluting our future. Last access: September 23, 2022. Available at: https://www.fao.org/fao-stories/article/en/c/1126974/

8. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020; 6(9):e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691

9. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl 2012; 101:133-64. DOI: https://doi.org/10.1007/978-3-7643-8340-4_6

10. Sakadevan K, Nguyen ML. Chapter two - Extent, Impact, and Response to Soil and Water Salinity in Arid and Semiarid Regions. Editor(s): Donald L. Sparks. Advances in Agronomy. Academic Press 2010; 109:55-74. ISBN 9780123850409. DOI: https://doi.org/10.1016/B978-0-12-385040-9.00002-5

11. Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O'Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, Cropper M, Ferraro G, Hanna J, Hanrahan D, Hu H, Hunter D, Janata G, Kupka R, Lanphear B, Lichtveld M, Martin K, Mustapha A, Sanchez-Triana E, Sandilya K, Schaefli L, Shaw J, Seddon J, Suk W, Téllez-Rojo MM, Yan C. Pollution and health: A progress update. Lancet Planet Health 2022 Jun; 6(6):e535-e547. DOI: https://doi.org/10.1016/S2542-5196(22)00090-0

12. Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM. Integrated remediation processes toward heavy metal removal/recovery from various environments: A review. Front Environ Sci 2019; 7:66. DOI: https://doi.org/10.3389/fenvs.2019.00066

13. Bijay-Singh, Craswell E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl Sci 2021; 3:518. DOI: https://doi.org/10.1007/s42452-021-04521-8

14. Li Y, Jia S, Liu J. Solidification, remediation and long-term stability of heavy metal contaminated soil under the background of sustainable development. Sci Rep 2022; 12(1):10330. DOI: https://doi.org/10.1038/s41598-022-14122-z

15. Feng YS, Du YJ, Zhou A, Zhang M, Li JS, Zhou SJ, Xia WY. Geoenvironmental properties of industrially contaminated site soil solidified/stabilized with a sustainable by-product-based binder. Sci Total Environ 2021; 765:142778. DOI: https://doi.org/10.1016/j.scitotenv.2020.142778

16. Dhaliwal SS, Singh J, Taneja PK, Mandal A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environ Sci Pollut Res Int 2020; 27(2):1319-1333. DOI: https://doi.org/10.1007/s11356-019-06967-1

17. Ferronato N, Torretta V. Waste mismanagement in developing countries: A review of global issues. Int J Environ Res Public Health 2019; 16(6):1060. DOI: https://doi.org/10.3390/ijerph16061060

18. Nurchi VM, Cappai R, Crisponi G, Sanna G, Alberti G, Biesuz R, Gama S. Chelating agents in soil remediation: A new method for a pragmatic choice of the right chelator. Front Chem 2020; 8:597400. DOI: https://doi.org/10.3389/fchem.2020.597400

19. Singh S, Parihar P, Singh R, Singh VP and Prasad SM. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 2016; 6:1143. DOI: https://doi.org/10.3389/fpls.2015.01143


20. Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 2018; 8(4):216. DOI: https://doi.org/10.1007/s13205-018-1237-8

21. Song P, Xu D, Yue J, Ma Y, Dong S, Feng J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci Total Environ 2022; 838(Pt 3):156417. DOI: https://doi.org/10.1016/j.scitotenv.2022.156417

22. Wołowiec M, Komorowska-Kaufman M, Pruss A, Rzepa G, Bajda T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals 2019; 9(8):487. DOI: https://doi.org/10.3390/min9080487

23. Wang K, Zhang N, Tan F, He J, Li J, Bao L. The influence of passivating agent on soil pollution. MethodsX 2021; 8:101321. DOI: https://doi.org/10.1016/j.mex.2021.101321

24. Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int J Environ Res Public Health 2017; 14(1):94. DOI: https://doi.org/10.3390/ijerph14010094

25. Matei E, Predescu AM, Râpă M, Țurcanu AA, Mateș I, Constantin N, Predescu C. Natural polymers and their nanocomposites used for environmental applications. Nanomaterials (Basel) 2022; 12(10):1707. DOI: https://doi.org/10.3390/nano12101707

26. Bilias F, Nikoli T, Kalderis D, Gasparatos D. Towards a Soil Remediation Strategy Using Biochar: Effects on soil chemical properties and bioavailability of potentially toxic elements. Toxics 2021; 9(8):184. DOI: https://doi.org/10.3390/toxics9080184

27. Wieczorek S, Weigand H, Schmid M, Marb C. Electrokinetic remediation of an electroplating site: Design and scale-up for an in-situ application in the unsaturated zone. Eng Geol 2005; 77(3-4):203-215. DOI: https://doi.org/10.1016/j.enggeo.2004.07.011

28. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 2020; 11:359. DOI: https://doi.org/10.3389/fpls.2020.00359

29. Wang F, Zhang S, Cheng P, Zhang S, Sun Y. Effects of soil amendments on heavy metal immobilization and accumulation by maize grown in a multiple-metal-contaminated soil and their potential for safe crop production. Toxics 2020; 8(4):102. DOI: https://doi.org/10.3390/toxics8040102

30. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021; 9(3):42. DOI: https://doi.org/10.3390/toxics9030042

31. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. Lyon (FR): International Agency for Research on Cancer; 1993. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 58.) Mercury and Mercury Compounds. Available at: https://www.ncbi.nlm.nih.gov/books/NBK499780/

32. Golubkina N, Kekina H, Caruso G. Yield, quality and antioxidant properties of indian mustard (Brassica juncea l.) in response to foliar biofortification with selenium and iodine. Plants (Basel) 2018; 7(4):80. DOI: https://doi.org/10.3390/plants7040080

33. Liu H, Li Y, Li S. Cu and Na contents regulate N uptake of Leymus chinensis growing in soda saline-alkali soil. PLoS One 2020; 15(12):e0243172. DOI: https://doi.org/10.1371/journal.pone.0243172

34. Krupnova TG, Rakova OV, Gavrilkina SV, Antoshkina EG, Baranov EO, Dmitrieva AP, Somova AV. Extremely high concentrations of zinc in birch tree leaves collected in Chelyabinsk, Russia. Environ Geochem Health 2021; 43(7):2551-2570. DOI: https://doi.org/10.1007/s10653-020-00605-3

35. Dada EO, Akinola MO, Owa SO, Dedeke GA, Aladesida AA, Owagboriaye FO, Oludipe EO. Efficacy of vermiremediation to remove contaminants from soil. J Health Pollut 2021; 11(29):210302. DOI: https://doi.org/10.5696/2156-9614-11.29.210302

36. Chao H, Sun M, Wu Y, Xia R, Yuan S, Hu F. Quantitative relationship between earthworms' sensitivity to organic pollutants and the contaminants' degradation in soil: A meta-analysis. J Hazard Mater 2022; 429:128286. DOI: https://doi.org/10.1016/j.jhazmat.2022.128286

37. Ojuederie OB, Babalola OO. microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health 2017; 14(12):1504. DOI: https://doi.org/10.3390/ijerph14121504

38. Gupta P, Diwan B. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep (Amst) 2016; 13:58-71. DOI: https://doi.org/10.1016/j.btre.2016.12.006

39. Aiking H, Govers H, van't Riet J. Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl Environ Microbiol 1985; 50(5):1262-1267. DOI: https://doi.org/10.1128/aem.50.5.1262-1267.1985

40. Pramanik K, Mitra S, Sarkar A, Maiti TK. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazard Mater 2018; 351:317-329. DOI: https://doi.org/10.1016/j.jhazmat.2018.03.009

41. Wezel A, Herren, B.G., Kerr, R.B. Barrios E, Rodrigues Gonçalves AL, Sinclair F. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron Sustain Dev 2020; 40: 40. DOI: https://doi.org/10.1007/s13593-020-00646-z

42. Olaniran AO, Balgobind A, Pillay B. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 2013; 14(5):10197-10228. DOI: https://doi.org/10.3390/ijms14051019

43. Ahmed N, Al-Mutairi KA. Earthworms effect on microbial population and soil fertility as well as their interaction with agriculture practices. Sustainability 2022; 14(13):7803. DOI: https://doi.org/10.3390/su14137803

44. Wang H, Cui T, Chen D, Luo Q, Xu J, Sun R, Zi W, Xu R, Liu Y, Zhang Y. Hexavalent chromium elimination from wastewater by integrated micro-electrolysis composites synthesized from red mud and rice straw via a facile one-pot method. Sci Rep 2022; 12(1):14242. DOI: https://doi.org/10.1038/s41598-022-18598-7
How to Cite
Rahman, A. (2022). How to Remediate Heavy Metal Contamination in Soil?. Science Insights, 41(4), 669–674. https://doi.org/10.15354/si.22.re082
Section
Review