##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 30, 2022

Zisis Rah

Bayu Rustika  

Abstract

Worldwide, pyrethroid pesticides have been widely used in the control of agricultural pests and indoor pesticides, so they have an important impact on human daily life. The acute toxicity studies of pyrethroid pesticides have gotten many achievements and progress, but there is still no clear demonstration of its long-term chronic effects. This review presented the collection of published experiments, population surveys and laboratory tests on the long-term and chronic effects of pyrethroid pesticides. Typical research papers, and screened out the research progress in neurotoxicity, reproductive developmental toxicity, immunotoxicity and tumor research of pyrethroid pesticides. It can provide reference ideas for further research and development of harmless pesticides and pesticides.

##plugins.themes.bootstrap3.article.details##

Keywords

Pyrethroid Pesticides, Health Hazard, Toxicity, Metabolism, Preventive Maneuvers

References
1. Matsuo N. Discovery and development of pyrethroid insecticides. Proc Jpn Acad Ser B Phys Biol Sci 2019; 95(7):378-400. DOI: https://doi.org/10.2183/pjab.95.027

2. Casida JE. Pyrethrum flowers and pyrethroid insecticides. Environ Health Persp 1980; 34:189-202. JSTOR, DOI: https://doi.org/10.2307/3428960

3. Shen MF, Kumar A, Ding SY, Grocke S. Comparative study on the toxicity of pyrethroids, α-cypermethrin and deltamethrin to Ceriodaphnia dubia. Ecotoxicol Environ Saf 2012; 78:9-13. DOI: https://doi.org/10.1016/j.ecoenv.2011.07.018

4. Chattopadhyay P, Banerjee G, Mukherjee S. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech 2017; 7(1):60. DOI: https://doi.org/10.1007/s13205-017-0717-6

5. Wakeling EN, Neal AP, Atchison WD. Pyrethroids and their effects on ion channels. In: Soundararajan, R. , editor. Pesticides - Advances in Chemical and Botanical Pesticides [Internet]. London: IntechOpen; 2012. DOI: https://doi.org/10.5772/50330

6. Soderlund DM. Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Arch Toxicol 2012; 86(2):165-181. DOI: https://doi.org/10.1007/s00204-011-0726-x

7. Ramchandra AM, Chacko B, Victor PJ. Pyrethroid poisoning. Indian J Crit Care Med 2019; 23(Suppl 4):S267-S271. DOI: https://doi.org/10.5005/jp-journals-10071-23304

8. Shafer TJ, Meyer DA. Effects of pyrethroids on voltage-sensitive calcium channels: A critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity. Toxicol Appl Pharmacol 2004; 196(2):303-318. DOI: https://doi.org/10.1016/j.taap.2003.12.013

9. National Research Council (US) Committee on Pesticides in the Diets of Infants and Children. Pesticides in the Diets of Infants and Children. Washington (DC): National Academies Press (US); 1993. 7, Estimating Exposures. Available at: https://www.ncbi.nlm.nih.gov/books/NBK236273/

10. Bradberry SM, Cage SA, Proudfoot AT, Vale JA. Poisoning due to pyrethroids. Toxicol Rev 2005;24(2):93-106. DOI: https://doi.org/10.2165/00139709-200524020-00003

11. Thundiyil JG, Stober J, Besbelli N, Pronczuk J. Acute pesticide poisoning: A proposed classification tool. Bull World Health Organ 2008; 86(3):205-209. DOI: https://doi.org/10.2471/blt.08.041814

12. Bao W, Liu B, Simonsen DW, Lehmler HJ. Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general us adult population. JAMA Intern Med 2020; 180(3):367-374. DOI: https://doi.org/10.1001/jamainternmed.2019.6019

13. Shafer TJ, Meyer DA, Crofton KM. Developmental neurotoxicity of pyrethroid insecticides: Critical review and future research needs. Environ Health Perspect 2005; 113(2):123-36. DOI: https://doi.org/10.1289/ehp.7254

14. Wang Q, Shen JY, Zhang R, Hong JW, Li Z, Ding Z, Wang HX, Zhang JP, Zhang MR, Xu LC. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020 May 30; 438:152460. DOI: https://doi.org/10.1016/j.tox.2020.152460

15. Zhang X, Zhang T, Ren X, Chen X, Wang S, Qin C. Pyrethroids toxicity to male reproductive system and offspring as a function of oxidative stress induction: Rodent studies. Front Endocrinol (Lausanne) 2021; 12:656106. DOI: https://doi.org/10.3389/fendo.2021.656106

16. Skolarczyk J, Pekar J, Nieradko-Iwanicka B. Immune disorders induced by exposure to pyrethroid insecticides. Postepy Hig Med Dosw (Online) 2017; 71:446-453. DOI: https://doi.org/10.5604/01.3001.0010.3827

17. Silver KS, Du Y, Nomura Y, Oliveira EE, Salgado VL, Zhorov BS, Dong K. Voltage-gated sodium channels as insecticide targets. Adv Insect Phys 2014; 46:389-433. DOI: https://doi.org/10.1016/B978-0-12-417010-0.00005-7

18. Pitzer EM, Williams MT, Vorhees CV. Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicol Teratol 2021; 87:106983. DOI: https://doi.org/10.1016/j.ntt.2021.106983

19. Hirano T, Suzuki N, Ikenaka Y, Hoshi N, Tabuchi Y. Neurotoxicity of a pyrethroid pesticide deltamethrin is associated with the imbalance in proteolytic systems caused by mitophagy activation and proteasome inhibition. Toxicol Appl Pharmacol 2021; 430:115723. DOI: https://doi.org/10.1016/j.taap.2021.115723

20. Sheets LP. A consideration of age-dependent differences in susceptibility to organophosphorus and pyrethroid insecticides. Neurotoxicology 2000; 21(1-2):57-63.

21. Godinho AF, Anselmo F, Horta DF. Perinatal exposure to type I and type II pyrethroids provoke persistent behavioral effects during rat offspring development. Med Res Arch 2017; 5(1):1-12.

22. Xi C, Yang Z, Yu Y, Li S, He J, El-Aziz TMA, Zhao F, Cao Z. Influence of perinatal deltamethrin exposure at distinct developmental stages on motor activity, learning and memory. Ecotoxicol Environ Saf 2022; 236:113460. DOI: https://doi.org/10.1016/j.ecoenv.2022.113460

23. Pitzer EM, Sugimoto C, Gudelsky GA, Huff Adams CL, Williams MT, Vorhees CV. Deltamethrin exposure daily from postnatal day 3-20 in Sprague Dawley rats causes long-term cognitive and behavioral deficits. Toxicol Sci 2019; 169(2):511-523. DOI: https://doi.org/10.1093/toxsci/kfz067

24. Di Consiglio E, Pistollato F, Mendoza-De Gyves E, Bal-Price A, Testai E. Integrating biokinetics and in vitro studies to evaluate developmental neurotoxicity induced by chlorpyrifos in human iPSC-derived neural stem cells undergoing differentiation towards neuronal and glial cells. Reprod Toxicol 2020; 98:174-188. DOI: https://doi.org/10.1016/j.reprotox.2020.09.010

25. Yang Y, Ma H, Zhou J, Liu J, Liu W. Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 2014; 96:146-154. DOI: https://doi.org/10.1016/j.chemosphere.2013.10.014

26. Paravani EV, Casco VH. Genotoxicity Induced by Cypermethrin in the Zebrafish Retina. In: Larramendy ML, Soloneski S, editors. Genotoxicity - A Predictable Risk to Our Actual World. London: IntechOpen; 2017. DOI: https://doi.org/10.5772/intechopen.72434

27. Farag MR, Alagawany M, Bilal RM, Gewida AGA, Dhama K, Abdel-Latif HMR, Amer MS, Rivero-Perez N, Zaragoza-Bastida A, Binnaser YS, Batiha GE, Naiel MAE. An overview on the potential hazards of pyrethroid insecticides in fish, with special emphasis on cypermethrin toxicity. Animals (Basel) 2021; 11(7):1880. DOI: https://doi.org/10.3390/ani11071880

28. Antwi FB, Reddy GV. Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 2015; 40(3):9159-23. DOI: https://doi.org/10.1016/j.etap.2015.09.023

29. von Ehrenstein OS, Ling C, Cui X, Cockburn M, Park AS, Yu F, Wu J, Ritz B. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ 2019; 364:l962. DOI: https://doi.org/10.1136/bmj.l962. Erratum in: BMJ 2019; 365:l4032.

30. Barkoski JM, Philippat C, Tancredi D, Schmidt RJ, Ozonoff S, Barr DB, Elms W, Bennett DH, Hertz-Picciotto I. In utero pyrethroid pesticide exposure in relation to autism spectrum disorder (ASD) and other neurodevelopmental outcomes at 3 years in the MARBLES longitudinal cohort. Environ Res 2021; 194:110495. DOI: https://doi.org/10.1016/j.envres.2020.110495

31. Addissie YA, Kruszka P, Troia A, Wong ZC, Everson JL, Kozel BA, Lipinski RJ, Malecki KMC, Muenke M. Prenatal exposure to pesticides and risk for holoprosencephaly: A case-control study. Environ Health 2020; 19(1):65. DOI: https://doi.org/10.1186/s12940-020-00611-z

32. Jurewicz J, Hanke W. Prenatal and childhood exposure to pesticides and neurobehavioral development: Review of epidemiological studies. Int J Occup Med Environ Health 2008;21(2):121-132. DOI: https://doi.org/10.2478/v10001-008-0014-z

33. Hyland C, Bradshaw PT, Gunier RB, Mora AM, Kogut K, Deardorff J, Sagiv SK, Bradman A, Eskenazi B. Associations between pesticide mixtures applied near home during pregnancy and early childhood with adolescent behavioral and emotional problems in the CHAMACOS study. Environ Epidemiol 2021; 5(3):e150. DOI: https://doi.org/10.1097/EE9.0000000000000150

34. Hyland C, Bradshaw P, Deardorff J, Gunier RB, Mora AM, Kogut K, Sagiv SK, Bradman A, Eskenazi B. Interactions of agricultural pesticide use near home during pregnancy and adverse childhood experiences on adolescent neurobehavioral development in the CHAMACOS study. Environ Res 2022; 204(Pt A):111908. DOI: https://doi.org/10.1016/j.envres.2021.111908

35. Gunier RB, Deardorff J, Rauch S, Bradshaw PT, Kogut K, Sagiv S, Hyland C, Mora AM, Eskenazi B. Residential proximity to agricultural pesticide use and risk-taking behaviors in young adults from the CHAMACOS study. Environ Res 2022; 215(Pt 2):114356. DOI: https://doi.org/10.1016/j.envres.2022.114356

36. Sutton P, Woodruff TJ, Perron J, Stotland N, Conry JA, Miller MD, Giudice LC. Toxic environmental chemicals: The role of reproductive health professionals in preventing harmful exposures. Am J Obstet Gynecol 2012; 207(3):164-173. DOI: https://doi.org/10.1016/j.ajog.2012.01.034

37. Brander SM, Gabler MK, Fowler NL, Connon RE, Schlenk D. Pyrethroid pesticides as endocrine disruptors: Molecular mechanisms in vertebrates with a focus on fishes. Environ Sci Technol 2016; 50(17):8977-8992. DOI: https://doi.org/10.1021/acs.est.6b02253

38. Marlatt VL, Bayen S, Castaneda-Cortès D, Delbès G, Grigorova P, Langlois VS, Martyniuk CJ, Metcalfe CD, Parent L, Rwigemera A, Thomson P, Van Der Kraak G. Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. Environ Res 2022; 208:112584. DOI: https://doi.org/10.1016/j.envres.2021.112584

39. National Research Council (US) Safe Drinking Water Committee; Thomas RD, editor. Drinking Water and Health: Volume 6. Washington (DC): National Academies Press (US); 1986. 2, Developmental Effects of Chemical Contaminants. Available at: https://www.ncbi.nlm.nih.gov/books/NBK219111/

40. Bao W, Liu B, Simonsen DW, Lehmler HJ. Association between exposure to pyrethroid insecticides and risk of all-cause and cause-specific mortality in the general us adult population. JAMA Intern Med 2020; 180(3):367-374. DOI: https://doi.org/10.1001/jamainternmed.2019.6019

41. Jin M, Li L, Xu C, Wen Y, Zhao M. Estrogenic activities of two synthetic pyrethroids and their metabolites. J Environ Sci (China) 2010; 22(2):290-296. DOI: https://doi.org/10.1016/s1001-0742(09)60107-8

42. Katragadda V, Adem M, Mohammad RA, Sri Bhasyam S, Battini K. Testosterone recuperates deteriorated male fertility in cypermethrin intoxicated rats. Toxicol Res 2020; 37(1):125-134. DOI: https://doi.org/10.1007/s43188-020-00046-1

43. Sharma P, Huq AU, Singh R. Cypermethrin-induced reproductive toxicity in the rat is prevented by resveratrol. J Hum Reprod Sci 2014; 7(2):99-106. DOI: https://doi.org/10.4103/0974-1208.138867

44. Kumar S, Gautam AK, Agarwal KR, Shah BA, Saiyad HN. Demonstration of sperm head shape abnormality and clastogenic potential of cypermethrin. J Environ Biol 2004; 25(2):187-190.

45. Piazza MJ, Urbanetz AA. Environmental toxins and the impact of other endocrine disrupting chemicals in women's reproductive health. JBRA Assist Reprod 2019; 23(2):154-164. DOI: https://doi.org/10.5935/1518-0557.20190016

46. Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: Consequences for female fertility. J Endocrinol 2017; 233(3):R109-R129. DOI: https://doi.org/10.1530/JOE-17-0023

47. Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Hu F, Long Y, Xia Y, Lu C, Song L, Wang S, Wang X. Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 2011; 85(6):1010-1016. DOI: https://doi.org/10.1016/j.chemosphere.2011.07.024

48. Meeker JD, Barr DB, Hauser R. Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men. Reprod Toxicol 2009; 27(2):155-60. DOI: https://doi.org/10.1016/j.reprotox.2008.12.012

49. Sun J, Bai S, Bai W, Zou F, Zhang L, Su Z, Zhang Q, Ou S, Huang Y. Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in R2C rat leydig cells. J Agric Food Chem 2013; 61(41):9955-9960. DOI: https://doi.org/10.1021/jf400809r

50. Young HA, Meeker JD, Martenies SE, Figueroa ZI, Barr DB, Perry MJ. Environmental exposure to pyrethroids and sperm sex chromosome disomy: A cross-sectional study. Environ Health 2013; 12:111. DOI: https://doi.org/10.1186/1476-069X-12-111

51. Radwan M, Jurewicz J, Wielgomas B, Sobala W, Piskunowicz M, Radwan P, Hanke W. Semen quality and the level of reproductive hormones after environmental exposure to pyrethroids. J Occup Environ Med 2014; 56(11):1113-1119. DOI: https://doi.org/10.1097/JOM.0000000000000297

52. Jurewicz J, Radwan M, Wielgomas B, Sobala W, Piskunowicz M, Radwan P, Bochenek M, Hanke W. The effect of environmental exposure to pyrethroids and DNA damage in human sperm. Syst Biol Reprod Med 2015; 61(1):37-43. DOI: https://doi.org/10.3109/19396368.2014.981886

53. Radwan M, Jurewicz J, Wielgomas B, Piskunowicz M, Sobala W, Radwan P, Jakubowski L, Hawuła W, Hanke W. The association between environmental exposure to pyrethroids and sperm aneuploidy. Chemosphere 2015; 128:42-48. DOI: https://doi.org/10.1016/j.chemosphere.2014.12.077

54. Hu Y, Zhang Y, Vinturache A, Wang Y, Shi R, Chen L, Qin K, Tian Y, Gao Y. Effects of environmental pyrethroids exposure on semen quality in reproductive-age men in Shanghai, China. Chemosphere. 2020; 245:125580. DOI: https://doi.org/10.1016/j.chemosphere.2019.125580

55. Meeker JD, Barr DB, Hauser R. Human semen quality and sperm DNA damage in relation to urinary metabolites of pyrethroid insecticides. Hum Reprod 2008; 23(8):1932-1940. DOI: https://doi.org/10.1093/humrep/den242

56. Fernández-Cruz T, Álvarez-Silvares E, Domínguez-Vigo P, Simal-Gándara J, Martínez-Carballo E. Prenatal exposure to organic pollutants in northwestern Spain using non-invasive matrices (placenta and meconium). Sci Total Environ 2020; 731:138341. DOI: https://doi.org/10.1016/j.scitotenv.2020.138341

57. Hashemi E, Malarkannan S. Tissue-resident NK cells: Development, maturation, and clinical relevance. Cancers (Basel) 2020; 12(6):1553. DOI: https://doi.org/10.3390/cancers12061553

58. Navarrete-Meneses MDP, Pérez-Vera P. Pyrethroid pesticide exposure and hematological cancer: Epidemiological, biological and molecular evidence. Rev Environ Health 2019; 34(2):197-210. DOI: https://doi.org/10.1515/reveh-2018-0070

59. Trosko JE, Chang CC. Mechanism of up-regulated gap junctional intercellular communication during chemoprevention and chemotherapy of cancer. Mutat Res 2001; 480-481:219-229. DOI: https://doi.org/10.1016/s0027-5107(01)00181-6

60. Rusiecki JA, Patel R, Koutros S, Beane-Freeman L, Landgren O, Bonner MR, Coble J, Lubin J, Blair A, Hoppin JA, Alavanja MC. Cancer incidence among pesticide applicators exposed to permethrin in the Agricultural Health Study. Environ Health Perspect 2009; 117(4):581-586. DOI: https://doi.org/10.1289/ehp.11318

61. Tateno C, Ito S, Tanaka M, Yoshitake A. Effects of pyrethroid insecticides on gap junctional intercellular communications in Balb/c3T3 cells by dye-transfer assay. Cell Biol Toxicol 1993; 9(3):215-221. DOI: https://doi.org/10.1007/BF00755600

62. Chetrite G, Delalonde L, Pasqualini JR. Comparative effect of embryonic mouse fibroblasts (Balb/c-3T3) on the proliferation of hormone-dependent (T-47D) and hormone-independent (MDA-MB-231) human breast cancer cell lines. Breast Cancer Res Treat 1993; 25(1):29-35. DOI: https://doi.org/10.1007/BF00662398

63. Nagarjuna A, Jacob Doss P. Acute oral toxicity and histopathological studies of cypermethrin in rats. Indian J Anim Res 2011; 7(1):18-23.

64. George J, Shukla Y. Early changes in proteome levels upon acute deltamethrin exposure in mammalian skin system associated with its neoplastic transformation potential. J Toxicol Sci 2013; 38(4):629-642. DOI: https://doi.org/10.2131/jts.38.629

65. Zahm SH, Ward MH. Pesticides and childhood cancer. Environ Health Perspect 1998; 106 Suppl 3(Suppl 3):893-908. DOI: https://doi.org/10.1289/ehp.98106893

66. Bhojwani D, Yang JJ, Pui CH. Biology of childhood acute lymphoblastic leukemia. Pediatr Clin North Am 2015; 62(1):47-60. DOI: https://doi.org/10.1016/j.pcl.2014.09.004

67. Ding G, Shi R, Gao Y, Zhang Y, Kamijima M, Sakai K, Wang G, Feng C, Tian Y. Pyrethroid pesticide exposure and risk of childhood acute lymphocytic leukemia in Shanghai. Environ Sci Technol 2012; 46(24):13480-7. DOI: https://doi.org/10.1021/es303362a

68. Boffetta P, Desai V. Exposure to permethrin and cancer risk: A systematic review. Crit Rev Toxicol 2018; 48(6):433-442. DOI: https://doi.org/10.1080/10408444.2018.1439449

69. Malley LA, Cagen SZ, Parker CM, Gardiner TH, van Gelder GA, Rose GP. Effect of vitamin E and other amelioratory agents on the fenvalerate-mediated skin sensation. Toxicol Lett 1985; 29(1):51-58. DOI: https://doi.org/10.1016/0378-4274(85)90199-7

70. Yousef MI. Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food Chem Toxicol 2010; 48(5):1152-1159. DOI: https://doi.org/10.1016/j.fct.2010.02.002

71. Galal MK, Khalaf AA, Ogaly HA, Ibrahim MA. Vitamin E attenuates neurotoxicity induced by deltamethrin in rats. BMC Complement Altern Med 2014; 14:458. DOI: https://doi.org/10.1186/1472-6882-14-458
How to Cite
Rah, Z., & Rustika, B. (2022). Toxicity and Health Hazards of Pyrethroid Pesticides. Science Insights, 41(6), 733–739. https://doi.org/10.15354/si.22.re096
Section
Review