Published Dec 31, 2022

Thamaporn Tangsujaritvijit  


Inflammatory bowel disease (IBD) is a lifelong, relapsing, chronic inflammatory disease of the digestive tract that can be brought on by a number of different etiologies. Studies have shown that patients with IBD also have nervous system involvement in addition to well-known extra-intestinal symptoms like arthritis and iritis, and researchers believe that neurological lesions in patients with IBD may be an important extra-intestinal manifestation. Currently, tentative findings from studies employing magnetic resonance imaging to study the brain structure and function of patients with IBD have been made.



Inflammatory Bowel Disease, Ulcerative Colitis, Crohn’s Disease, Magnetic Resonance Imaging, Neuroimaging

1. Flynn S, Eisenstein S. Inflammatory bowel disease presentation and diagnosis. Surg Clin North Am 2019; 99(6):1051-1062. DOI: https://doi.org/10.1016/j.suc.2019.08.001

2. Kelsen JR, Russo P, Sullivan KE. Early-onset inflammatory bowel disease. Immunol Allergy Clin North Am 2019; 39(1):63-79. DOI: https://doi.org/10.1016/j.iac.2018.08.008

3. M'Koma AE. Inflammatory bowel disease: An expanding global health problem. Clin Med Insights Gastroenterol 2013; 6:33-47. DOI: https://doi.org/10.4137/CGast.S12731

4. Sinagra E, Utzeri E, Morreale GC, Fabbri C, Pace F, Anderloni A. Microbiota-gut-brain axis and its affect inflammatory bowel disease: Pathophysiological concepts and insights for clinicians. World J Clin Cases 2020; 8(6):1013-1025. DOI: https://doi.org/10.12998/wjcc.v8.i6.1013

5. Günther C, Rothhammer V, Karow M, Neurath M, Winner B. The gut-brain axis in inflammatory bowel disease-current and future perspectives. Int J Mol Sci 2021; 22(16):8870. DOI: https://doi.org/10.3390/ijms22168870

6. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2014; 4(4):1339-1368. DOI: https://doi.org/10.1002/cphy.c130055

7. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health 2017; 5:258. DOI: https://doi.org/10.3389/fpubh.2017.00258

8. Dziurkowska E, Wesolowski M. Cortisol as a biomarker of mental disorder severity. J Clin Med 2021; 10(21):5204. DOI: https://doi.org/10.3390/jcm10215204

9. Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci 2009; 29(31):9661-9664. DOI: https://doi.org/10.1523/JNEUROSCI.2160-09.2009

10. Agostini A, Benuzzi F, Filippini N, Bertani A, Scarcelli A, Farinelli V, Marchetta C, Calabrese C, Rizzello F, Gionchetti P, Ercolani M, Campieri M, Nichelli P. New insights into the brain involvement in patients with Crohn's disease: a voxel-based morphometry study. Neurogastroenterol Motil 2013; 25(2):147-e82. DOI: https://doi.org/10.1111/nmo.12017

11. Bao CH, Liu P, Liu HR, Wu LY, Shi Y, Chen WF, Qin W, Lu Y, Zhang JY, Jin XM, Wang XM, Zhao JM, Liu XM, Tian J, Wu HG. Alterations in brain grey matter structures in patients with Crohn's disease and their correlation with psychological distress. J Crohns Colitis 2015; 9(7):532-540. DOI: https://doi.org/10.1093/ecco-jcc/jjv057

12. Bao CH, Liu P, Liu HR, Wu LY, Jin XM, Wang SY, Shi Y, Zhang JY, Zeng XQ, Ma LL, Qin W, Zhao JM, Calhoun VD, Tian J, Wu HG. Differences in regional homogeneity between patients with Crohn's disease with and without abdominal pain revealed by resting-state functional magnetic resonance imaging. Pain 2016; 157(5):1037-1044. DOI: https://doi.org/10.1097/j.pain.0000000000000479

13. Tillisch K, Mayer EA, Labus JS. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 2011;140(1):91-100. DOI: https://doi.org/10.1053/j.gastro.2010.07.053

14. Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta 2012; 1822(3):386-400. DOI: https://doi.org/10.1016/j.bbadis.2011.08.003

15. Yeh PH, Simpson K, Durazzo TC, Gazdzinski S, Meyerhoff DJ. Tract-Based Spatial Statistics (TBSS) of diffusion tensor imaging data in alcohol dependence: abnormalities of the motivational neurocircuitry. Psychiatry Res 2009; 173(1):22-30. DOI: https://doi.org/10.1016/j.pscychresns.2008.07.012

16. Kamali A, Flanders AE, Brody J, Hunter JV, Hasan KM. Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct 2014; 219(1):269-281. DOI: https://doi.org/10.1007/s00429-012-0498-y

17. Dolapcioglu C, Dolapcioglu H. Structural brain lesions in inflammatory bowel disease. World J Gastrointest Pathophysiol 2015; 6(4):124-130. DOI: https://doi.org/10.4291/wjgp.v6.i4.124

18. Nair VA, Dodd K, Rajan S, Santhanubosu A, Beniwal-Patel P, Saha S, Prabhakaran V. A verbal fluency task-based brain activation fmri study in patients with Crohn's disease in remission. J Neuroimaging 2019; 29(5):630-639. DOI: https://doi.org/10.1111/jon.12634

19. Hou J, Dodd K, Nair VA, Rajan S, Beniwal-Patel P, Saha S, Prabhakaran V. Alterations in brain white matter microstructural properties in patients with Crohn's disease in remission. Sci Rep 2020; 10(1):2145. DOI: https://doi.org/10.1038/s41598-020-59098-w

20. Joel SE, Caffo BS, van Zijl PC, Pekar JJ. On the relationship between seed-based and ICA-based measures of functional connectivity. Magn Reson Med 2011; 66(3):644-657. DOI: https://doi.org/10.1002/mrm.22818

21. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 2018; 9:44. DOI: https://doi.org/10.3389/fpsyt.2018.00044

22. Bao C, Liu P, Liu H, Jin X, Shi Y, Wu L, Zeng X, Zhang J, Wang D, Calhoun VD, Tian J, Wu H. Difference in regional neural fluctuations and functional connectivity in Crohn's disease: a resting-state functional MRI study. Brain Imaging Behav 2018; 12(6):1795-1803. DOI: https://doi.org/10.1007/s11682-018-9850-z

23. Rajmohan V, Mohandas E. The limbic system. Indian J Psychiatry 2007; 49(2):132-139. DOI: https://doi.org/10.4103/0019-5545.33264

24. Kairov U, Cantini L, Greco A, Molkenov A, Czerwinska U, Barillot E, Zinovyev A. Determining the optimal number of independent components for reproducible transcriptomic data analysis. BMC Genomics 2017; 18(1):712. DOI: https://doi.org/10.1186/s12864-017-4112-9

25. Hou J, Mohanty R, Nair VA, Dodd K, Beniwal-Patel P, Saha S, Prabhakaran V. Alterations in resting-state functional connectivity in patients with Crohn's disease in remission. Sci Rep 2019; 9(1):7412. DOI: https://doi.org/10.1038/s41598-019-43878-0

26. Thomann AK, Griebe M, Thomann PA, Hirjak D, Ebert MP, Szabo K, Reindl W, Wolf RC. Intrinsic neural network dysfunction in quiescent Crohn's Disease. Sci Rep 2017; 7(1):11579. DOI: https://doi.org/10.1038/s41598-017-11792-y

27. Garrison KA, Zeffiro TA, Scheinost D, Constable RT, Brewer JA. Meditation leads to reduced default mode network activity beyond an active task. Cogn Affect Behav Neurosci 2015; 15(3):712-720. DOI: https://doi.org/10.3758/s13415-015-0358-3

28. Agostini A, Filippini N, Cevolani D, Agati R, Leoni C, Tambasco R, Calabrese C, Rizzello F, Gionchetti P, Ercolani M, Leonardi M, Campieri M. Brain functional changes in patients with ulcerative colitis: A functional magnetic resonance imaging study on emotional processing. Inflamm Bowel Dis 2011; 17(8):1769-1777. DOI: https://doi.org/10.1002/ibd.21549

29. de Dios-Duarte MJ, Arias A, Durantez-Fernández C, Niño Martín V, Olea E, Barba-Pérez MÁ, Pérez-Pérez L, Cárdaba-García RM, Barrón A. Flare-ups in crohn's disease: Influence of stress and the external locus of control. Int J Environ Res Public Health 2022; 19(20):13131. DOI: https://doi.org/10.3390/ijerph192013131

30. Rubio A, Pellissier S, Van Oudenhove L, Ly HG, Dupont P, Tack J, Dantzer C, Delon-Martin C, Bonaz B. Brain responses to uncertainty about upcoming rectal discomfort in quiescent Crohn's disease - a fMRI study. Neurogastroenterol Motil 2016; 28(9):1419-1432. DOI: https://doi.org/10.1111/nmo.12844

31. Agarwal S, Sair HI, Pillai JJ. The resting-state functional magnetic resonance imaging regional homogeneity metrics-Kendall’s coefficient of concordance-regional homogeneity and coherence-regional homogeneity-are valid indicators of tumor-related neurovascular uncoupling. Brain Connect 2017; 7(4):228-235. DOI: https://doi.org/10.1089/brain.2016.0482

32. Huang M, Li X, Fan W, Li J, Zhu L, Lei P, Wu L, Sun Q, Zou Y, Han P. Alterations of regional homogeneity in Crohn’s disease with psychological disorders: A resting-state fMRI study. Front Neurol 2022; 13:817556. DOI: https://doi.org/10.3389/fneur.2022.817556

33. Yu Z, Liu LY, Lai YY, Tian ZL, Yang L, Zhang Q, Liang FR, Yu SY, Zheng QH. Altered resting brain functions in patients with irritable bowel syndrome: A systematic review. Front Hum Neurosci 2022; 16:851586. DOI: https://doi.org/10.3389/fnhum.2022.851586

34. Li L, Ma J, Xu JG, Zheng YL, Xie Q, Rong L, Liang ZH. Brain functional changes in patients with Crohn’s disease: A resting-state fMRI study. Brain Behav 2021; 11(8):e2243. DOI: https://doi.org/10.1002/brb3.2243

35. Kong N, Gao C, Xu M, Gao X. Changes in the anterior cingulate cortex in Crohn's disease: A neuroimaging perspective. Brain Behav 2021; 11(3):e02003. DOI: https://doi.org/10.1002/brb3.2003

36. Kong N, Gao C, Zhang F, Zhang M, Yue J, Lv K, Zhang Q, Fan Y, Lv B, Zang Y, Xu M. Neurophysiological effects of the anterior cingulate cortex on the exacerbation of Crohn’s disease: A combined fMRI-MRS study. Front Neurosci 2022; 16:840149. DOI: https://doi.org/10.3389/fnins.2022.840149

37. Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 2021; 13(6):2099. DOI: https://doi.org/10.3390/nu13062099
How to Cite
Tangsujaritvijit, T. (2022). Magnetic Resonance Neuroimaging of Inflammatory Bowel Disease. Science Insights, 41(7), 755–759. https://doi.org/10.15354/si.22.re103