##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Dec 31, 2022

Jung Heo  

Abstract

Frailty, as a type of geriatric condition, has been a major focus of geriatrics researchers in recent years. COPD is one of the major risk factors associated with frailty. Consequently, chronic obstructive pulmonary disease-related frailty has become the focal point of numerous investigations. However, the majority of studies focus on cross-sectional investigations of the incidence of frailty in COPD and their associations. The study of its pathophysiology and intervention methods is dispersed, and there is a paucity of literature reviews. Moreover, in-depth research into the pathophysiology of such patients and the implementation of efficient therapeutic strategies are crucial for enhancing the long-term quality of life of patients. The purpose of this article is to provide a reference for creating nutritional intervention programs for chronic obstructive pulmonary disease and a debilitated population by describing the etiology of these patients and summarizing potential nutritional therapies based on recent research.

##plugins.themes.bootstrap3.article.details##

Keywords

Lung Disease, Chronic Obstructive Pulmonary Disease, Frailty, Pathogenesis, Intervention

References
1. Quaderi SA, Hurst JR. The unmet global burden of COPD. Glob Health Epidemiol Genom 2018; 3:e4. DOI: https://doi.org/10.1017/gheg.2018.1

2. Sigurgeirsdottir J, Halldorsdottir S, Arnardottir RH, Gudmundsson G, Bjornsson EH. COPD patients’ experiences, self-reported needs, and needs-driven strategies to cope with self-management. Int J Chron Obstruct Pulmon Dis 2019; 14:1033-1043. DOI: https://doi.org/10.2147/COPD.S201068

3. Stellefson M, Paige SR, Barry AE, Wang MQ, Apperson A. Risk factors associated with physical and mental distress in people who report a COPD diagnosis: latent class analysis of 2016 behavioral risk factor surveillance system data. Int J Chron Obstruct Pulmon Dis 2019; 14:809-822. DOI: https://doi.org/10.2147/COPD.S194018

4. Mori H, Tokuda Y. Differences and overlap between sarcopenia and physical frailty in older community-dwelling Japanese. Asia Pac J Clin Nutr 2019; 28(1):157-165. DOI: https://doi.org/10.6133/apjcn.201903_28(1).0021

5. Zhao J, Huang Y, Yu X. A narrative review of gut-muscle axis and sarcopenia: The potential role of gut microbiota. Int J Gen Med 2021; 14:1263-1273. DOI: https://doi.org/10.2147/IJGM.S301141

6. Han H, Yi B, Zhong R, Wang M, Zhang S, Ma J, Yin Y, Yin J, Chen L, Zhang H. From gut microbiota to host appetite: Gut microbiota-derived metabolites as key regulators. Microbiome 2021; 9(1):162. DOI: https://doi.org/10.1186/s40168-021-01093-y

7. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019; 16(8):461-478. DOI: https://doi.org/10.1038/s41575-019-0157-3

8. Hénique C, Mansouri A, Vavrova E, Lenoir V, Ferry A, Esnous C, Ramond E, Girard J, Bouillaud F, Prip-Buus C, Cohen I. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype. FASEB J 2015; 29(6):2473-2483. DOI: https://doi.org/10.1096/fj.14-257717

9. Han Q, Huang X, Yan F, Yin J, Xiao Y. The role of gut microbiota in the skeletal muscle development and fat deposition in pigs. Antibiotics (Basel) 2022; 11(6):793. DOI: https://doi.org/10.3390/antibiotics11060793

10. Sprooten RTM, Lenaerts K, Braeken DCW, Grimbergen I, Rutten EP, Wouters EFM, Rohde GGU. Increased small intestinal permeability during severe acute exacerbations of COPD. Respiration 2018; 95(5):334-342. DOI: https://doi.org/10.1159/000485935

11. Kirschner SK, Deutz NEP, Jonker R, Olde Damink SWM, Harrykissoon RI, Zachria AJ, Dasarathy S, Engelen MPKJ. Intestinal function is impaired in patients with Chronic Obstructive Pulmonary Disease. Clin Nutr 2021; 40(4):2270-2277. DOI: https://doi.org/10.1016/j.clnu.2020.10.010

12. Kent BD, Mitchell PD, McNicholas WT. Hypoxemia in patients with COPD: Cause, effects, and disease progression. Int J Chron Obstruct Pulmon Dis 2011; 6:199-208. DOI: https://doi.org/10.2147/COPD.S10611

13. Chan SMH, Selemidis S, Bozinovski S, Vlahos R. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): Clinical significance and therapeutic strategies. Pharmacol Ther 2019; 198:160-188. DOI: https://doi.org/10.1016/j.pharmthera.2019.02.013

14. O’Donnell R, Breen D, Wilson S, Djukanovic R. Inflammatory cells in the airways in COPD. Thorax 2006; 61(5):448-454. DOI: https://doi.org/10.1136/thx.2004.024463

15. King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med 2015; 4(1):68. DOI: https://doi.org/10.1186/s40169-015-0068-z

16. Chakraborty RK, Burns B. Systemic inflammatory response syndrome. [Updated 2022 May 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK547669/

17. Straub RH. Interaction of the endocrine system with inflammation: A function of energy and volume regulation. Arthritis Res Ther 2014; 16(1):203. DOI: https://doi.org/10.1186/ar4484

18. Webster JM, Kempen LJAP, Hardy RS, Langen RCJ. Inflammation and skeletal muscle wasting during cachexia. Front Physiol 2020; 11:597675. DOI: https://doi.org/10.3389/fphys.2020.597675

19. Wüst RC, Degens H. Factors contributing to muscle wasting and dysfunction in COPD patients. Int J Chron Obstruct Pulmon Dis 2007; 2(3):289-300.

20. Gea J, Pascual S, Casadevall C, Orozco-Levi M, Barreiro E. Muscle dysfunction in chronic obstructive pulmonary disease: Update on causes and biological findings. J Thorac Dis 2015; 7(10):E418-E438. DOI: https://doi.org/10.3978/j.issn.2072-1439.2015.08.04

21. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13:757-772. DOI: https://doi.org/10.2147/CIA.S158513

22. Goodpaster BH, Chomentowski P, Ward BK, Rossi A, Glynn NW, Delmonico MJ, Kritchevsky SB, Pahor M, Newman AB. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: A randomized controlled trial. J Appl Physiol (1985) 2008; 105(5):1498-1503. DOI: https://doi.org/10.1152/japplphysiol.90425.2008

23. Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol 2012; 3:142. DOI: https://doi.org/10.3389/fphys.2012.00142

24. McGuinness AJ, Sapey E. Oxidative stress in COPD: Sources, markers, and potential mechanisms. J Clin Med 2017; 6(2):21. DOI: https://doi.org/10.3390/jcm6020021

25. Fischer BM, Voynow JA, Ghio AJ. COPD: Balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis 2015; 10:261-276. DOI: https://doi.org/10.2147/COPD.S42414

26. Vézina FA, Cantin AM. Antioxidants and chronic obstructive pulmonary disease. Chronic Obstr Pulm Dis 2018; 5(4):277-288. DOI: https://doi.org/10.15326/jcopdf.5.4.2018.0133

27. Solsona R, Pavlin L, Bernardi H, Sanchez AM. Molecular regulation of skeletal muscle growth and organelle biosynthesis: Practical recommendations for exercise training. Int J Mol Sci 2021; 22(5):2741. DOI: https://doi.org/10.3390/ijms22052741

28. Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. mTOR-dependent cell survival mechanisms. Cold Spring Harb Perspect Biol 2012; 4(12):a008771. DOI: https://doi.org/10.1101/cshperspect.a008771

29. Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015; 25(9):545-555. DOI: https://doi.org/10.1016/j.tcb.2015.06.002

30. Vainshtein A, Sandri M. Signaling pathways that control muscle mass. Int J Mol Sci 2020; 21(13):4759. DOI: https://doi.org/10.3390/ijms21134759
31. Dodds R, Sayer AA. Sarcopenia and frailty: New challenges for clinical practice. Clin Med (Lond) 2016; 16(5):455-458. DOI: https://doi.org/10.7861/clinmedicine.16-5-455

32. Antoniu SA, Boiculese LV, Prunoiu V. Frailty, a dimension of impaired functional status in advanced COPD: Utility and clinical applicability. Medicina (Kaunas) 2021; 57(5):474. DOI: https://doi.org/10.3390/medicina57050474

33. Al-Mudares F, Reddick S, Ren J, Venkatesh A, Zhao C, Lingappan K. Role of growth differentiation factor 15 in lung disease and senescence: Potential role across the lifespan. Front Med (Lausanne) 2020; 7:594137. DOI: https://doi.org/10.3389/fmed.2020.594137

34. Patel MS, Lee J, Baz M, Wells CE, Bloch S, Lewis A, Donaldson AV, Garfield BE, Hopkinson NS, Natanek A, Man WD, Wells DJ, Baker EH, Polkey MI, Kemp PR. Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J Cachexia Sarcopenia Muscle 2016; 7(4):436-448. DOI: https://doi.org/10.1002/jcsm.12096

35. Re Cecconi AD, Forti M, Chiappa M, Zhu Z, Zingman LV, Cervo L, Beltrame L, Marchini S, Piccirillo R. Musclin, A myokine induced by aerobic exercise, retards muscle atrophy during cancer cachexia in mice. Cancers (Basel) 2019; 11(10):1541. DOI: https://doi.org/10.3390/cancers11101541

36. Tanaka R, Sugiura H, Yamada M, Ichikawa T, Koarai A, Fujino N, Yanagisawa S, Onodera K, Numakura T, Sato K, Kyogoku Y, Sano H, Yamanaka S, Okazaki T, Tamada T, Miura M, Takahashi T, Ichinose M. Physical inactivity is associated with decreased growth differentiation factor 11 in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2018; 13:1333-1342. DOI: https://doi.org/10.2147/COPD.S157035

37. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017; 9(9):1021. DOI: https://doi.org/10.3390/nu9091021

38. Altamura F, Maurice CF, Castagner B. Drugging the gut microbiota: Toward rational modulation of bacterial composition in the gut. Curr Opin Chem Biol 2020; 56:10-15. DOI: https://doi.org/10.1016/j.cbpa.2019.09.005

39. Tran TTT, Cousin FJ, Lynch DB, Menon R, Brulc J, Brown JR, O’Herlihy E, Butto LF, Power K, Jeffery IB, O’Connor EM, O’Toole PW. Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome 2019; 7(1):39. DOI: https://doi.org/10.1186/s40168-019-0654-1

40. Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, Giampieri E, Jennings A, Candela M, Turroni S, Zoetendal EG, Hermes GDA, Elodie C, Meunier N, Brugere CM, Pujos-Guillot E, Berendsen AM, De Groot LCPGM, Feskins EJM, Kaluza J, Pietruszka B, Bielak MJ, Comte B, Maijo-Ferre M, Nicoletti C, De Vos WM, Fairweather-Tait S, Cassidy A, Brigidi P, Franceschi C, O’Toole PW. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 2020; 69(7):1218-1228. DOI: https://doi.org/10.1136/gutjnl-2019-319654

41. Zaloga GP. Narrative review of n-3 polyunsaturated fatty acid supplementation upon immune functions, resolution molecules and lipid peroxidation. Nutrients 2021; 13(2):662. DOI: https://doi.org/10.3390/nu13020662

42. Scoditti E, Massaro M, Garbarino S, Toraldo DM. Role of diet in chronic obstructive pulmonary disease prevention and treatment. Nutrients 2019; 11(6):1357. DOI: https://doi.org/10.3390/nu11061357

43. Mariamenatu AH, Abdu EM. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “Balanced Antagonistic Metabolic Functions” in the human body. J Lipids 2021; 2021:8848161. DOI: https://doi.org/10.1155/2021/8848161

44. de Batlle J, Mendez M, Romieu I, Balcells E, Benet M, Donaire-Gonzalez D, Ferrer JJ, Orozco-Levi M, Antó JM, Garcia-Aymerich J; PAC-COPD Study Group. Cured meat consumption increases risk of readmission in COPD patients. Eur Respir J 2012; 40(3):555-560. DOI: https://doi.org/10.1183/09031936.00116911

45. Yao Y, Zhou J, Diao X, Wang S. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: A systematic review and meta-analysis. Ther Adv Respir Dis 2019; 13:1753466619866096. DOI: https://doi.org/10.1177/1753466619866096

46. Stocks J, Valdes AM. Effect of dietary omega-3 fatty acid supplementation on frailty-related phenotypes in older adults: A systematic review and meta-analysis protocol. BMJ Open 2018; 8(5):e021344. DOI: https://doi.org/10.1136/bmjopen-2017-021344

47. Atlantis E, Cochrane B. The association of dietary intake and supplementation of specific polyunsaturated fatty acids with inflammation and functional capacity in chronic obstructive pulmonary disease: A systematic review. Int J Evid Based Healthc 2016;14(2):53-63. DOI: https://doi.org/10.1097/XEB.0000000000000056

48. Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res 2014; 7:69-87. DOI: https://doi.org/10.2147/JIR.S63898

49. Kennel KA, Drake MT, Hurley DL. Vitamin D deficiency in adults: When to test and how to treat. Mayo Clin Proc. 2010; 85(8):752-757; quiz 757-758. DOI: https://doi.org/10.4065/mcp.2010.0138

50. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017:8416763. DOI: https://doi.org/10.1155/2017/8416763

51. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol 2020; 11:694. DOI: https://doi.org/10.3389/fphys.2020.00694

52. Minich DM, Brown BI. A review of dietary (Phyto)nutrients for glutathione support. Nutrients 2019; 11(9):2073. DOI: https://doi.org/10.3390/nu11092073

53. Wu Q, Zhong ZM, Pan Y, Zeng JH, Zheng S, Zhu SY, Chen JT. Advanced oxidation protein products as a novel marker of oxidative stress in postmenopausal osteoporosis. Med Sci Monit 2015; 21:2428-2432. DOI: https://doi.org/10.12659/MSM.894347

54. Collins PF, Yang IA, Chang YC, Vaughan A. Nutritional support in chronic obstructive pulmonary disease (COPD): An evidence update. J Thorac Dis 2019; 11(Suppl 17):S2230-S2237. DOI: https://doi.org/10.21037/jtd.2019.10.41

55. Weijzen MEG, Kouw IWK, Geerlings P, Verdijk LB, van Loon LJC. During hospitalization, older patients at risk for malnutrition consume < 0.65 grams of protein per kilogram body weight per day. Nutr Clin Pract 2020; 35(4):655-663. DOI: https://doi.org/10.1002/ncp.10542

56. Azzolino D, Arosio B, Marzetti E, Calvani R, Cesari M. Nutritional status as a mediator of fatigue and its underlying mechanisms in older people. Nutrients 2020; 12(2):444. DOI: https://doi.org/10.3390/nu12020444

57. Slater GJ, Dieter BP, Marsh DJ, Helms ER, Shaw G, Iraki J. Is an energy surplus required to maximize skeletal muscle hypertrophy associated with resistance training. Front Nutr 2019; 6:131. DOI: https://doi.org/10.3389/fnut.2019.00131

58. Hruby A, Hu FB. The epidemiology of obesity: A big picture. Pharmacoeconomics 2015; 33(7):673-689. DOI: https://doi.org/10.1007/s40273-014-0243-x

59. St-Onge MP, Mikic A, Pietrolungo CE. Effects of diet on sleep quality. Adv Nutr 2016; 7(5):938-949. DOI: https://doi.org/10.3945/an.116.012336

60. Binks H, E Vincent G, Gupta C, Irwin C, Khalesi S. Effects of diet on sleep: A narrative review. Nutrients. 2020; 12(4):936. DOI: https://doi.org/10.3390/nu12040936

61. Zeng Y, Yang J, Du J, Pu X, Yang X, Yang S, Yang T. Strategies of functional foods promote sleep in human being. Curr Signal Transduct Ther 2014; 9(3):148-155. DOI: https://doi.org/10.2174/1574362410666150205165504
How to Cite
Heo, J. (2022). Pathogenesis and Nutritional Intervention of Chronic Obstructive Pulmonary Disease-Associated Frailty. Science Insights, 41(7), 761–767. https://doi.org/10.15354/si.22.re105
Section
Review