Is Addiction being Memorized?
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Addiction study has switched to the realm of modern neuroscience, with the most recent and cutting-edge studies focusing on the behaviors that contribute to addiction. Addiction memory is a series of specific plastic changes at the synaptic level caused by long-term drug stimulation through gene transcription and expression. Based on clinical observations, addictive memory is viewed as a dysregulation of independent acquisition associated with the integration of choice lines in the “feedback loop” and “comparative system” of the hippocampus during neural information processing. Two meanings of the addition memory as (i) memory unrelated to the loss of drug control and (ii) drug-specific memory of the addicted drugs.
##plugins.themes.bootstrap3.article.details##
Drug Addiction, Memory Theory, Neuronal Plasticity, Neuromodulation
2. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35(1):217-238. DOI: https://doi.org/10.1038/npp.2009.110. Erratum in: Neuropsychopharmacology 2010; 35(4):1051.
3. Substance Abuse and Mental Health Services Administration (US); Office of the Surgeon General (US). Facing Addiction in America: The Surgeon General's Report on Alcohol, Drugs, and Health [Internet]. Washington (DC): US Department of Health and Human Services; 2016 Nov. Chapter 2: The neurobiology of substance use, misuse, and addiction. Available at: https://www.ncbi.nlm.nih.gov/books/NBK424849/
4. Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ. Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 2009; 56 Suppl 1(Suppl 1):73-82. DOI: https://doi.org/10.1016/j.neuropharm.2008.06.059
5. Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 2012; 4(6):a005710. DOI: https://doi.org/10.1101/cshperspect.a005710
6. Kelley AE. Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron 2004; 44(1):161-179. DOI: https://doi.org/10.1016/j.neuron.2004.09.016
7. Torregrossa MM, Corlett PR, Taylor JR. Aberrant learning and memory in addiction. Neurobiol Learn Mem 2011; 96(4):609-623. DOI: https://doi.org/10.1016/j.nlm.2011.02.014
8. Šimić G, Tkalčić M, Vukić V, Mulc D, Španić E, Šagud M, Olucha-Bordonau FE, Vukšić M, R Hof P. Understanding emotions: Origins and roles of the amygdala. Biomolecules 2021; 11(6):823. DOI: https://doi.org/10.3390/biom11060823
9. Murty VP, Labar KS, Adcock RA. Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe. J Neurosci 2012; 32(26):8969-8976. DOI: https://doi.org/10.1523/JNEUROSCI.0094-12.2012
10. Squire LR, Genzel L, Wixted JT, Morris RG. Memory consolidation. Cold Spring Harb Perspect Biol 2015; 7(8):a021766. DOI: https://doi.org/10.1101/cshperspect.a021766
11. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci 2013; 14(9):609-625. DOI: https://doi.org/10.1038/nrn3381. Erratum in: Nat Rev Neurosci 2013; 14(10):736.
12. Smith RJ, Laiks LS. Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87(Pt A):11-21. DOI: https://doi.org/10.1016/j.pnpbp.2017.09.003
13. Bender BN, Torregrossa MM. Molecular and circuit mechanisms regulating cocaine memory. Cell Mol Life Sci 2020; 77(19):3745-3768. DOI: https://doi.org/10.1007/s00018-020-03498-8
14. Sherafat Y, Bautista M, Fowler JP, Chen E, Ahmed A, Fowler CD. The interpeduncular-ventral hippocampus pathway mediates active stress coping and natural reward. eNeuro 2020; 7(6):ENEURO.0191-20.2020. DOI: https://doi.org/10.1523/ENEURO.0191-20.2020
15. Abraham WC, Jones OD, Glanzman DL. Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci Learn 2019; 4:9. DOI: https://doi.org/10.1038/s41539-019-0048-y
16. Mateos-Aparicio P, Rodríguez-Moreno A. The Impact of Studying Brain Plasticity. Front Cell Neurosci 2019; 13:66. DOI: https://doi.org/10.3389/fncel.2019.00066
17. O'Reilly KC, Perica MI, Fenton AA. Synaptic plasticity/dysplasticity, process memory and item memory in rodent models of mental dysfunction. Schizophr Res 2019; 207:22-36. DOI: https://doi.org/10.1016/j.schres.2018.08.025
18. Bailey CH, Kandel ER, Harris KM. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb Perspect Biol 2015; 7(7):a021758. DOI: https://doi.org/10.1101/cshperspect.a021758
19. Citri A, Malenka RC. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008; 33(1):18-41. DOI: https://doi.org/10.1038/sj.npp.1301559
20. Nicoll RA. A brief history of long-term potentiation. Neuron 2017; 93(2):281-290. DOI: https://doi.org/10.1016/j.neuron.2016.12.015
21. Durkee C, Kofuji P, Navarrete M, Araque A. Astrocyte and neuron cooperation in long-term depression. Trends Neurosci 2021; 44(10):837-848. DOI: https://doi.org/10.1016/j.tins.2021.07.004
22. Lüscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: From molecular changes to circuit remodeling. Neuron 2011; 69(4):650-663. DOI: https://doi.org/10.1016/j.neuron.2011.01.017
23. Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry. 2004 Nov-Dec;12(6):305-20. DOI: https://doi.org/10.1080/10673220490910844
24. Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014; 282:13-22. DOI: https://doi.org/10.1016/j.neuroscience.2014.01.025
25. Sinha R. Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 2008; 1141:105-130. DOI: https://doi.org/10.1196/annals.1441.030
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.