Published Jun 30, 2023

Fabio Leal de Rossini  


The article has been retracted by the Editors due to the discovery of plagiarism. The Publisher conducted an investigation, which revealed evidence of plagiarism, despite the fact that the professional similarity checking server did not raise any alarms regarding plagiarism before and after the publication. According to our analysis of the article, it can be classified as a case of inter-language plagiarism. The author did not agree with any plagiarism accusations but concurred with the retraction. The complete text of the retracted article is available as a supplement in the online version of this article.



Parasites, Insect-Derived Components, Toxicological Effects, Pharmacological Effects, Treg Cellss

1. Burgess SL, Gilchrist CA, Lynn TC, Petri WA Jr. Parasitic protozoa and interactions with the host intestinal microbiota. Infect Immun 2017; 85(8):e00101-17. DOI: https://doi.org/10.1128/IAI.00101-17

2. Schmid-Hempel P. Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philos Trans R Soc Lond B Biol Sci 2009; 364(1513):85-98. DOI: https://doi.org/10.1098/rstb.2008.0157

3. Seed JR. Protozoa: Pathogenesis and Defenses. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 78. Available at: https://www.ncbi.nlm.nih.gov/books/NBK8043/

4. Horn D, Duraisingh MT. Antiparasitic chemotherapy: From genomes to mechanisms. Annu Rev Pharmacol Toxicol 2014; 54:71-94. DOI: https://doi.org/10.1146/annurev-pharmtox-011613-135915

5. Su XZ, Zhang C, Joy DA. Host-malaria parasite interactions and impacts on mutual evolution. Front Cell Infect Microbiol 2020; 10:587933. DOI: https://doi.org/10.3389/fcimb.2020.587933

6. Carey KL, Jongco AM, Kim K, Ward GE. The Toxoplasma gondii rhoptry protein ROP4 is secreted into the parasitophorous vacuole and becomes phosphorylated in infected cells. Eukaryot Cell 2004; 3(5):1320-1330. DOI: https://doi.org/10.1128/EC.3.5.1320-1330.2004

7. Etheridge RD, Alaganan A, Tang K, Lou HJ, Turk BE, Sibley LD. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe 2014; 15(5):537-550. DOI: https://doi.org/10.1016/j.chom.2014.04.002

8. Fentress SJ, Behnke MS, Dunay IR, Mashayekhi M, Rommereim LM, Fox BA, Bzik DJ, Taylor GA, Turk BE, Lichti CF, Townsend RR, Qiu W, Hui R, Beatty WL, Sibley LD. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 2010; 8(6):484-495. DOI: https://doi.org/10.1016/j.chom.2010.11.005

9. Mercer HL, Snyder LM, Doherty CM, Fox BA, Bzik DJ, Denkers EY. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog 2020; 16(5):e1008572. DOI: https://doi.org/10.1371/journal.ppat.1008572

10. Yang CS, Yuk JM, Lee YH, Jo EK. Toxoplasma gondii GRA7-Induced TRAF6 Activation Contributes to Host Protective Immunity. Infect Immun 2015; 84(1):339-350. DOI: https://doi.org/10.1128/IAI.00734-15

11. Basavaraju A. Toxoplasmosis in HIV infection: An overview. Trop Parasitol 2016; 6(2):129-135. DOI: https://doi.org/10.4103/2229-5070.190817

12. Mercer HL, Snyder LM, Doherty CM, Fox BA, Bzik DJ, Denkers EY. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog 2020; 16(5):e1008572. DOI: https://doi.org/10.1371/journal.ppat.1008572

13. Egan CE, Sukhumavasi W, Butcher BA, Denkers EY. Functional aspects of Toll-like receptor/MyD88 signalling during protozoan infection: Focus on Toxoplasma gondii. Clin Exp Immunol 2009; 156(1):17-24. DOI: https://doi.org/10.1111/j.1365-2249.2009.03876.x

14. Iyappan S, Wollscheid HP, Rojas-Fernandez A, Marquardt A, Tang HC, Singh RK, Scheffner M. Turning the RING domain protein MdmX into an active ubiquitin-protein ligase. J Biol Chem 2010; 285(43):33065-33072. DOI: https://doi.org/10.1074/jbc.M110.115113

15. Fereig RM, Kuroda Y, Terkawi MA, Mahmoud ME, Nishikawa Y. Immunization with Toxoplasma gondii peroxiredoxin 1 induces protective immunity against toxoplasmosis in mice. PLoS One 2017; 12(4):e0176324. DOI: https://doi.org/10.1371/journal.pone.0176324

16. Şahar EA, Can H, İz SG, Döşkaya AD, Kalantari-Dehaghi M, Deveci R, Gürüz AY, Döşkaya M. Development of a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V and determination of its protective efficacy against acute toxoplasmosis. BMC Infect Dis 2020; 20(1):493. DOI: https://doi.org/10.1186/s12879-020-05220-2

17. Wang LJ, Xiao T, Xu C, Li J, Liu GZ, Yin K, Cui Y, Wei QK, Huang BC, Sun H. Protective immune response against Toxoplasma gondii elicited by a novel yeast-based vaccine with microneme protein 16. Vaccine 2018; 36(27):3943-3948. DOI: https://doi.org/10.1016/j.vaccine.2018.05.072

18. Czarnewski P, Araújo ECB, Oliveira MC, Mineo TWP, Silva NM. Recombinant TgHSP70 immunization protects against toxoplasma gondii brain cyst formation by enhancing inducible nitric oxide expression. Front Cell Infect Microbiol 2017; 7:142. DOI: https://doi.org/10.3389/fcimb.2017.00142

19. Tartaglione AM, Villani A, Ajmone-Cat MA, Minghetti L, Ricceri L, Pazienza V, De Simone R, Calamandrei G. Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl Psychiatry 2022; 12(1):384. DOI: https://doi.org/10.1038/s41398-022-02149-9

20. Garfoot AL, Cervantes PW, Knoll LJ. Transcriptional analysis shows a robust host response to toxoplasma gondii during early and late chronic infection in both male and female mice. Infect Immun 2019; 87(5):e00024-19. DOI: https://doi.org/10.1128/IAI.00024-19

21. Firouzeh N, Ziaali N, Sheibani V, Doustimotlagh AH, Afgar A, Zamanpour M, Keshavarz H, Shojaee S, Shafiei R, Esmaeilpour K, Babaei Z. Chronic toxoplasma gondii infection potentiates Parkinson’s disease course in mice model. Iran J Parasitol 2021; 16(4):527-537. DOI: https://doi.org/10.18502/ijpa.v16i4.7863

22. O’Brien KB, Schultz-Cherry S, Knoll LJ. Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection. J Virol 2011; 85(17):8680-8688. DOI: https://doi.org/10.1128/JVI.05142-11

23. Settles EW, Moser LA, Harris TH, Knoll LJ. Toxoplasma gondii upregulates interleukin-12 to prevent Plasmodium berghei-induced experimental cerebral malaria. Infect Immun 2014; 82(3):1343-1353. DOI: https://doi.org/10.1128/IAI.01259-13

24. Charest H, Sedegah M, Yap GS, Gazzinelli RT, Caspar P, Hoffman SL, Sher A. Recombinant attenuated Toxoplasma gondii expressing the Plasmodium yoelii circumsporozoite protein provides highly effective priming for CD8+ T cell-dependent protective immunity against malaria. J Immunol 2000; 165(4):2084-2092. DOI: https://doi.org/10.4049/jimmunol.165.4.2084

25. Kim YR, Kim JS, Yun JS, Kim S, Kim SY, Jang K, Yang CS. Toxoplasma gondii GRA8 induces ATP5A1-SIRT3-mediated mitochondrial metabolic resuscitation: A potential therapy for sepsis. Exp Mol Med 2018; 50(3):e464. DOI: https://doi.org/10.1038/emm.2017.308

26. Xie Y, Wen H, Yan K, Wang S, Wang X, Chen J, Li Y, Xu Y, Zhong Z, Shen J, Chu D. Toxoplasma gondii GRA15II effector-induced M1 cells ameliorate liver fibrosis in mice infected with Schistosomiasis japonica. Cell Mol Immunol 2018; 15(2):120-134. DOI: https://doi.org/10.1038/cmi.2016.21

27. Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol 2012; 2:72. DOI: https://doi.org/10.3389/fcimb.2012.00072

28. Hsiao CH, Yao C, Storlie P, Donelson JE, Wilson ME. The major surface protease (MSP or GP63) in the intracellular amastigote stage of Leishmania chagasi. Mol Biochem Parasitol 2008; 157(2):148-159. DOI: https://doi.org/10.1016/j.molbiopara.2007.10.008

29. Brittingham A, Chen G, McGwire BS, Chang KP, Mosser DM. Interaction of Leishmania gp63 with cellular receptors for fibronectin. Infect Immun 1999; 67(9):4477-4484. DOI: https://doi.org/10.1128/IAI.67.9.4477-4484.1999

30. Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: A signaling point of view. Clin Microbiol Rev 2005; 18(2):293-305. DOI: https://doi.org/10.1128/CMR.18.2.293-305.2005

31. Gomez MA, Contreras I, Hallé M, Tremblay ML, McMaster RW, Olivier M. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2009; 2(90):ra58. DOI: https://doi.org/10.1126/scisignal.2000213

32. de Lima CMF, Magalhães AS, Costa R, Barreto CC, Machado PRL, Carvalho EM, Lessa MM, Carvalho LP. High anti-leishmania igg antibody levels are associated with severity of mucosal leishmaniasis. Front Cell Infect Microbiol 2021; 11:652956. DOI: https://doi.org/10.3389/fcimb.2021.652956

33. Gabriel ÁM, Galué-Parra A, Pereira WLA, Pedersen KW, da Silva EO. Leishmania 360°: Guidelines for exosomal research. Microorganisms 2021; 9(10):2081. DOI: https://doi.org/10.3390/microorganisms9102081

34. da Silva Lira Filho A, Fajardo EF, Chang KP, Clément P, Olivier M. Leishmania exosomes/extracellular vesicles containing GP63 are essential for enhance cutaneous leishmaniasis development upon co-inoculation of Leishmania amazonensis and its exosomes. Front Cell Infect Microbiol 2022; 11:709258. DOI: https://doi.org/10.3389/fcimb.2021.709258

35. Wen L, Wang YD, Shen DF, Zheng PD, Tu MD, You WD, Zhu YR, Wang H, Feng JF, Yang XF. Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury. Neural Regen Res 2022; 17(12):2717-2724. DOI: https://doi.org/10.4103/1673-5374.339489

36. Gurung P, Kanneganti TD. Immune responses against protozoan parasites: A focus on the emerging role of Nod-like receptors. Cell Mol Life Sci 2016; 73(16):3035-3051. DOI: https://doi.org/10.1007/s00018-016-2212-3

37. Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of innate immunity in visceral leishmaniasis and their implication in vaccine development. Front Immunol 2021; 12:748325. DOI: https://doi.org/10.3389/fimmu.2021.748325

38. Duarte MC, Pimenta DC, Menezes-Souza D, Magalhães RD, Diniz JL, Costa LE, Chávez-Fumagalli MA, Lage PS, Bartholomeu DC, Alves MJ, Fernandes AP, Soto M, Tavares CA, Gonçalves DU, Rocha MO, Coelho EA. Proteins Selected in Leishmania (Viannia) braziliensis by an Immunoproteomic Approach with Potential Serodiagnosis Applications for Tegumentary Leishmaniasis. Clin Vaccine Immunol 2015; 22(11):1187-1196. DOI: https://doi.org/10.1128/CVI.00465-15

39. Chávez-Fumagalli MA, Schneider MS, Lage DP, Machado-de-Ávila RA, Coelho EA. An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics. Exp Parasitol 2017; 176:66-74. DOI: https://doi.org/10.1016/j.exppara.2017.03.005

40. Salehi-Sangani G, Mohebali M, Jajarmi V, Khamesipour A, Bandehpour M, Mahmoudi M, Zahedi-Zavaram H. Immunization against Leishmania major infection in BALB/c mice using a subunit-based DNA vaccine derived from TSA, LmSTI1, KMP11, and LACK predominant antigens. Iran J Basic Med Sci 2019; 22(12):1493-1501. DOI: https://doi.org/10.22038/IJBMS.2019.14051

41. Tapia E, Pérez-Jiménez E, López-Fuertes L, Gonzalo R, Gherardi MM, Esteban M. The combination of DNA vectors expressing IL-12 + IL-18 elicits high protective immune response against cutaneous leishmaniasis after priming with DNA-p36/LACK and the cytokines, followed by a booster with a vaccinia virus recombinant expressing p36/LACK. Microbes Infect 2003; 5(2):73-84. DOI: https://doi.org/10.1016/s1286-4579(02)00077-1

42. Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9(4):e15055. DOI: https://doi.org/10.1016/j.heliyon.2023.e15055

43. Breton M, Tremblay MJ, Ouellette M, Papadopoulou B. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun 2005; 73(10):6372-6382. DOI: https://doi.org/10.1128/IAI.73.10.6372-6382.2005

44. Tuong ZK, Noske K, Kuo P, Bashaw AA, Teoh SM, Frazer IH. Murine HPV16 E7-expressing transgenic skin effectively emulates the cellular and molecular features of human high-grade squamous intraepithelial lesions. Papillomavirus Res 2018; 5:6-20. DOI: https://doi.org/10.1016/j.pvr.2017.10.001

45. Romero-Masters JC, Lambert PF, Munger K. Molecular mechanisms of MmuPV1 E6 and E7 and implications for human disease. Viruses 2022; 14(10):2138. DOI: https://doi.org/10.3390/v14102138

46. Caner A, Sadıqova A, Erdoğan A, Namlıses D, Nalbantsoy A, Oltulu F, Toz S, Yiğittürk G, Ozkök E, Gunduz C, Ozbel Y, Haydaroğlu A. Targeting of antitumor ımmune responses with live-attenuated Leishmania strains in breast cancer model. Breast Cancer 2020; 27(6):1082-1095. DOI: https://doi.org/10.1007/s12282-020-01112-0

47. World Health Organization. Malaria. Last access: June 1, 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/malaria

48. Zanghì G, Vembar SS, Baumgarten S, Ding S, Guizetti J, Bryant JM, Mattei D, Jensen ATR, Rénia L, Goh YS, Sauerwein R, Hermsen CC, Franetich JF, Bordessoulles M, Silvie O, Soulard V, Scatton O, Chen P, Mecheri S, Mazier D, Scherf A. A specific PfEMP1 is expressed in P. falciparum sporozoites and plays a role in hepatocyte infection. Cell Rep 2018; 22(11):2951-2963. DOI: https://doi.org/10.1016/j.celrep.2018.02.075

49. Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293(1):230-252. DOI: https://doi.org/10.1111/imr.12807

50. El-Assaad F, Wheway J, Mitchell AJ, Lou J, Hunt NH, Combes V, Grau GE. Cytoadherence of Plasmodium berghei-infected red blood cells to murine brain and lung microvascular endothelial cells in vitro. Infect Immun. 2013; 81(11):3984-3991. DOI: https://doi.org/10.1128/IAI.00428-13

51. Toda H, Diaz-Varela M, Segui-Barber J, Roobsoong W, Baro B, Garcia-Silva S, Galiano A, Gualdrón-López M, Almeida ACG, Brito MAM, de Melo GC, Aparici-Herraiz I, Castro-Cavadía C, Monteiro WM, Borràs E, Sabidó E, Almeida IC, Chojnacki J, Martinez-Picado J, Calvo M, Armengol P, Carmona-Fonseca J, Yasnot MF, Lauzurica R, Marcilla A, Peinado H, Galinski MR, Lacerda MVG, Sattabongkot J, Fernandez-Becerra C, Del Portillo HA. Plasma-derived extracellular vesicles from Plasmodium vivax patients signal spleen fibroblasts via NF-κB facilitating parasite cytoadherence. Nat Commun 2020; 11(1):2761. DOI: https://doi.org/10.1038/s41467-020-16337-y

52. Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P, Rayavara K, Yang W, Turner L, Lavstsen T, Theander TG, Peng W, Wei G, Jing Q, Wakabayashi Y, Bansal A, Luo Y, Ribeiro JM, Scherf A, Aravind L, Zhu J, Zhao K, Miller LH. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature 2013; 499(7457):223-227. DOI: https://doi.org/10.1038/nature12361

53. Atcheson E, Reyes-Sandoval A. Protective efficacy of peptides from Plasmodium vivax circumsporozoite protein. Vaccine 2020; 38(27):4346-4354. DOI: https://doi.org/10.1016/j.vaccine.2020.03.063

54. Ragotte RJ, Higgins MK, Draper SJ. The RH5-CyRPA-Ripr complex as a malaria vaccine target. Trends Parasitol 2020; 36(6):545-559. DOI: https://doi.org/10.1016/j.pt.2020.04.003

55. Zininga T, Makumire S, Gitau GW, Njunge JM, Pooe OJ, Klimek H, Scheurr R, Raifer H, Prinsloo E, Przyborski JM, Hoppe H, Shonhai A. Plasmodium falciparum Hop (PfHop) Interacts with the Hsp70 Chaperone in a nucleotide-dependent fashion and exhibits ligand selectivity. PLoS One 2015; 10(8):e0135326. DOI: https://doi.org/10.1371/journal.pone.0135326

56. Gitau GW, Mandal P, Blatch GL, Przyborski J, Shonhai A. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 2012; 17(2):191-202. DOI: https://doi.org/10.1007/s12192-011-0299-x

57. Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the plasmodium falciparum hsp90 towards selective antimalarial drug design: The past, present and future. Cells 2021; 10(11):2849. DOI: https://doi.org/10.3390/cells10112849

58. Shahinas D, Folefoc A, Pillai DR. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance. Pathogens 2013; 2(1):33-54. DOI: https://doi.org/10.3390/pathogens2010033

59. Gowda DC, Wu X. Parasite recognition and signaling mechanisms in innate immune responses to malaria. Front Immunol 2018; 9:3006. DOI: https://doi.org/10.3389/fimmu.2018.03006

60. López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What is known about the immune response induced by Plasmodium vivax malaria vaccine candidates? Front Immunol 2017; 8:126. DOI: https://doi.org/10.3389/fimmu.2017.00126

61. Salanti A, Clausen TM, Agerbæk MØ, Al Nakouzi N, Dahlbäck M, Oo HZ, Lee S, Gustavsson T, Rich JR, Hedberg BJ, Mao Y, Barington L, Pereira MA, LoBello J, Endo M, Fazli L, Soden J, Wang CK, Sander AF, Dagil R, Thrane S, Holst PJ, Meng L, Favero F, Weiss GJ, Nielsen MA, Freeth J, Nielsen TO, Zaia J, Tran NL, Trent J, Babcook JS, Theander TG, Sorensen PH, Daugaard M. Targeting human cancer by a glycosaminoglycan binding malaria protein. Cancer Cell 2015; 28(4):500-514. DOI: https://doi.org/10.1016/j.ccell.2015.09.003

62. Spliid CB, Toledo AG, Sanderson P, Mao Y, Gatto F, Gustavsson T, Choudhary S, Saldanha AL, Vogelsang RP, Gögenur I, Theander TG, Leach FE 3rd, Amster IJ, Esko JD, Salanti A, Clausen TM. The specificity of the malarial VAR2CSA protein for chondroitin sulfate depends on 4-O-sulfation and ligand accessibility. J Biol Chem. 2021; 297(6):101391. DOI: https://doi.org/10.1016/j.jbc.2021.101391

63. Wei KY, Yan Q, Tang B, Yang SM, Zhang PB, Deng MM, Lü MH. Hookworm infection: A neglected cause of overt obscure gastrointestinal bleeding. Korean J Parasitol 2017; 55(4):391-398. DOI: https://doi.org/10.3347/kjp.2017.55.4.391

64. Ness TE, Agrawal V, Bedard K, Ouellette L, Erickson TA, Hotez P, Weatherhead JE. Maternal hookworm infection and its effects on maternal health: A systematic review and meta-analysis. Am J Trop Med Hyg 2020; 103(5):1958-1968. DOI: https://doi.org/10.4269/ajtmh.20-0503

65. Nair MG, Herbert DR. Immune polarization by hookworms: taking cues from T helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages. Immunology 2016; 148(2):115-124. DOI: https://doi.org/10.1111/imm.12601

66. Khudhair Z, Alhallaf R, Eichenberger RM, Field M, Krause L, Sotillo J, Loukas A. Administration of hookworm excretory/secretory proteins improves glucose tolerance in a mouse model of type 2 diabetes. Biomolecules 2022; 12(5):637. DOI: https://doi.org/10.3390/biom12050637

67. Eichenberger RM, Ryan S, Jones L, Buitrago G, Polster R, Montes de Oca M, Zuvelek J, Giacomin PR, Dent LA, Engwerda CR, Field MA, Sotillo J, Loukas A. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice. Front Immunol 2018; 9:850. DOI: https://doi.org/10.3389/fimmu.2018.00850

68. Cobos C, Bansal PS, Wilson DT, Jones L, Zhao G, Field MA, Eichenberger RM, Pickering DA, Ryan RYM, Ratnatunga CN, Miles JJ, Ruscher R, Giacomin PR, Navarro S, Loukas A, Daly NL. Peptides derived from hookworm anti-inflammatory proteins suppress inducible colitis in mice and inflammatory cytokine production by human cells. Front Med (Lausanne) 2022; 9:934852. DOI: https://doi.org/10.3389/fmed.2022.934852

69. Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 2018; 9(25):17937-17950. DOI: https://doi.org/10.18632/oncotarget.24788

70. Wangchuk P, Shepherd C, Constantinoiu C, Ryan RYM, Kouremenos KA, Becker L, Jones L, Buitrago G, Giacomin P, Wilson D, Daly N, McConville MJ, Miles JJ, Loukas A. Hookworm-derived metabolites suppress pathology in a mouse model of colitis and inhibit secretion of key inflammatory cytokines in primary human leukocytes. Infect Immun 2019; 87(4):e00851-18. DOI: https://doi.org/10.1128/IAI.00851-18

71. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, Clarke G, Stanton C, Dinan TG, Cryan JF. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol 2018; 596(20):4923-4944. DOI: https://doi.org/10.1113/JP276431

72. Williamson AL, Lustigman S, Oksov Y, Deumic V, Plieskatt J, Mendez S, Zhan B, Bottazzi ME, Hotez PJ, Loukas A. Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infect Immun 2006; 74(2):961-967. DOI: https://doi.org/10.1128/IAI.74.2.961-967.2006

73. Smallwood TB, Navarro S, Cristofori-Armstrong B, Watkins TS, Tungatt K, Ryan RYM, Haigh OL, Lutzky VP, Mulvenna JP, Rosengren KJ, Loukas A, Miles JJ, Clark RJ. Synthetic hookworm-derived peptides are potent modulators of primary human immune cell function that protect against experimental colitis in vivo. J Biol Chem 2021; 297(1):100834. DOI: https://doi.org/10.1016/j.jbc.2021.100834

74. Schwartz C, Fallon PG. Schistosoma “Eggs-iting” the host: Granuloma formation and egg excretion. Front Immunol. 2018; 9:2492. DOI: https://doi.org/10.3389/fimmu.2018.02492

75. Wu C, Chen Q, Fang Y, Wu J, Han Y, Wang Y, Yang Y, Chu M, Feng Y, Tan L, Guo X, Hu W, Wang Z. Schistosoma japonicum egg specific protein SjE16.7 recruits neutrophils and induces inflammatory hepatic granuloma initiation. PLoS Negl Trop Dis 2014; 8(2):e2703. DOI: https://doi.org/10.1371/journal.pntd.0002703

76. Liu Z, Zhang L, Liang Y, Lu L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front Cell Infect Microbiol 2022; 12:1035765. DOI: https://doi.org/10.3389/fcimb.2022.1035765

77. Carson JP, Gobert GN. Modulation of the host immune response by schistosome egg-secreted proteins is a critical avenue of host-parasite communication. Pathogens 2021; 10(7):863. DOI: https://doi.org/10.3390/pathogens10070863

78. Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, Dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150(5):401-415. DOI: https://doi.org/10.1017/S0031182023000021

79. Takaki KK, Roca FJ, Schramm G, Wilbers RHP, Ittiprasert W, Brindley PJ, Rinaldi G, Berriman M, Ramakrishnan L, Pagán AJ. Tumor Necrosis Factor and Schistosoma mansoni egg antigen omega-1 shape distinct aspects of the early egg-induced granulomatous response. PLoS Negl Trop Dis 2021; 15(1):e0008814. DOI: https://doi.org/10.1371/journal.pntd.0008814

80. Hagen J, Young ND, Every AL, Pagel CN, Schnoeller C, Scheerlinck JP, Gasser RB, Kalinna BH. Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo. Nat Commun 2014; 5:5375. DOI: https://doi.org/10.1038/ncomms6375

81. Tang H, Liang YB, Chen ZB, Du LL, Zeng LJ, Wu JG, Yang W, Liang HP, Ma ZF. Soluble egg antigen activates m2 macrophages via the STAT6 and PI3K pathways, and Schistosoma japonicum alternatively activates macrophage polarization to improve the survival rate of septic mice. J Cell Biochem 2017; 118(12):4230-4239. DOI: https://doi.org/10.1002/jcb.26073

82. Ho CH, Cheng CH, Huang TW, Peng SY, Lee KM, Cheng PC. Switched phenotypes of macrophages during the different stages of Schistosoma japonicum infection influenced the subsequent trends of immune responses. J Microbiol Immunol Infect 2022; 55(3):503-526. DOI: https://doi.org/10.1016/j.jmii.2021.06.005

83. Williams DL, Asahi H, Botkin DJ, Stadecker MJ. Schistosome infection stimulates host CD4(+) T helper cell and B-cell responses against a novel egg antigen, thioredoxin peroxidase. Infect Immun 2001; 69(2):1134-1141. DOI: https://doi.org/10.1128/IAI.69.2.1134-1141.2001

84. Costain AH, Phythian-Adams AT, Colombo SAP, Marley AK, Owusu C, Cook PC, Brown SL, Webb LM, Lundie RJ, Smits HH, Berriman M, MacDonald AS. Dynamics of host immune response development during Schistosoma mansoni infection. Front Immunol 2022; 13:906338. DOI: https://doi.org/10.3389/fimmu.2022.906338

85. Shen J, Wang L, Peng M, Liu Z, Zhang B, Zhou T, Sun X, Wu Z. Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model. Parasit Vectors 2019; 12(1):457. DOI: https://doi.org/10.1186/s13071-019-3697-z

86. Li J, Liu H, Jiang J, She X, Niu Y, Ming Y. The potential role of Schistosome-associated factors as therapeutic modulators of the immune system. Infect Immun 2020; 88(8):e00754-19. DOI: https://doi.org/10.1128/IAI.00754-19

87. Zhang W, Luo X, Zhang F, Zhu Y, Yang B, Hou M, Xu Z, Yu C, Chen Y, Chen L, Ji M. SjTat-TPI facilitates adaptive T-cell responses and reduces hepatic pathology during Schistosoma japonicum infection in BALB/c mice. Parasit Vectors 2015; 8:664. DOI: https://doi.org/10.1186/s13071-015-1275-6

88. Song X, Shen J, Wen H, Zhong Z, Luo Q, Chu D, Qi Y, Xu Y, Wei W. Impact of Schistosoma japonicum infection on collagen-induced arthritis in DBA/1 mice: A murine model of human rheumatoid arthritis. PLoS One 2011; 6(8):e23453. DOI: https://doi.org/10.1371/journal.pone.0023453

89. He Y, Li J, Zhuang W, Yin L, Chen C, Li J, Chi F, Bai Y, Chen XP. The inhibitory effect against collagen-induced arthritis by Schistosoma japonicum infection is infection stage-dependent. BMC Immunol 2010; 11:28. DOI: https://doi.org/10.1186/1471-2172-11-28

90. Mu Y, McManus DP, Hou N, Cai P. Schistosome infection and Schistosome-derived products as modulators for the prevention and alleviation of immunological disorders. Front Immunol 2021; 12:619776. DOI: https://doi.org/10.3389/fimmu.2021.619776

91. Liu F, Cheng W, Pappoe F, Hu X, Wen H, Luo Q, Wang S, Deng F, Xie Y, Xu Y, Shen J. Schistosoma japonicum cystatin attenuates murine collagen-induced arthritis. Parasitol Res 2016; 115(10):3795-3806. DOI: https://doi.org/10.1007/s00436-016-5140-0

92. Xu Z, Ji M, Li C, Du X, Hu W, McManus DP, You H. A biological and immunological characterization of Schistosoma japonicum heat shock proteins 40 and 90α. Int J Mol Sci 2020; 21(11):4034. DOI: https://doi.org/10.3390/ijms21114034

93. Chen J, Xu T, Zhu D, Wang J, Huang C, Lyu L, Hu B, Sun W, Duan Y. Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway. Cell Death Dis 2016; 7(7):e2315. DOI: https://doi.org/10.1038/cddis.2016.228

94. Ren J, Hu L, Yang J, Yang L, Gao F, Lu P, Fan M, Zhu Y, Liu J, Chen L, Gupta S, Yang X, Liu P. Novel T-cell epitopes on Schistosoma japonicum SjP40 protein and their preventive effect on allergic asthma in mice. Eur J Immunol 2016; 46(5):1203-1213. DOI: https://doi.org/10.1002/eji.201545775

95. Sun X, Zhang L, Wang J, Chen J, Zhu D, Shen P, He X, Pan J, Peng W, Duan Y. Schistosoma japonicum protein SjP40 inhibits TGF-β1-induced activation of hepatic stellate cells. Parasitol Res 2015; 114(11):4251-4257. DOI: https://doi.org/10.1007/s00436-015-4663-0

96. Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K, Chang F, Wang Y. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res 2019; 14(8):1335-1342. DOI: https://doi.org/10.4103/1673-5374.253510

97. Ma Y, Wei C, Qi X, Pu Y, Dong L, Xu L, Zhou S, Zhu J, Chen X, Wang X, Su C. Schistosoma japonicum-derived peptide SJMHE1 promotes peripheral nerve repair through a macrophage-dependent mechanism. Am J Transl Res 2021; 13(3):1290-1306.

98. Li L, Shan W, Zhu H, Xue F, Ma Y, Dong L, Feng D, Mao J, Yuan G, Wang X. SJMHE1 peptide from Schistosoma japonicum inhibits asthma in mice by regulating Th17/Treg cell balance via miR-155. J Inflamm Res 2021; 14:5305-5318. DOI: https://doi.org/10.2147/JIR.S334636

99. Zhang W, Li L, Zheng Y, Xue F, Yu M, Ma Y, Dong L, Shan Z, Feng D, Wang T, Wang X. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice. J Cell Mol Med 2019; 23(11):7819-7829. DOI: https://doi.org/10.1111/jcmm.14661

100. Shan W, Zhang W, Xue F, Ma Y, Dong L, Wang T, Zheng Y, Feng D, Chang M, Yuan G, Wang X. Schistosoma japonicum peptide SJMHE1 inhibits acute and chronic colitis induced by dextran sulfate sodium in mice. Parasit Vectors 2021; 14(1):455. DOI: https://doi.org/10.1186/s13071-021-04977-y

101. Ito A, Budke CM. Genetic diversity of Taenia solium and its relation to clinical presentation of cysticercosis. Yale J Biol Med 2021; 94(2):343-349.

102. Cui Y, Wang X, Xu J, Liu X, Wang X, Pang J, Song Y, Yu M, Song W, Luo X, Liu M, Sun S. Proteomic analysis of Taenia solium cyst fluid by shotgun LC-MS/MS. J Parasitol 2021; 107(5):799-809. DOI: https://doi.org/10.1645/20-65

103. Ranasinghe SL, Boyle GM, Fischer K, Potriquet J, Mulvenna JP, McManus DP. Kunitz type protease inhibitor EgKI-1 from the canine tapeworm Echinococcus granulosus as a promising therapeutic against breast cancer. PLoS One 2018; 13(8):e0200433. DOI: https://doi.org/10.1371/journal.pone.0200433

104. Ranasinghe SL, Rivera V, Boyle GM, McManus DP. Kunitz type protease inhibitor from the canine tapeworm as a potential therapeutic for melanoma. Sci Rep 2019; 9(1):16207. DOI: https://doi.org/10.1038/s41598-019-52609-4

105. Callejas BE, Mendoza-Rodríguez MG, Villamar-Cruz O, Reyes-Martínez S, Sánchez-Barrera CA, Rodríguez-Sosa M, Delgado-Buenrostro NL, Martínez-Saucedo D, Chirino YI, León-Cabrera SA, Pérez-Plasencia C, Vaca-Paniagua F, Arias-Romero LE, Terrazas LI. Helminth-derived molecules inhibit colitis-associated colon cancer development through NF-κB and STAT3 regulation. Int J Cancer 2019; 145(11):3126-3139. DOI: https://doi.org/10.1002/ijc.32626

106. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 2009; 15(4):283-293. DOI: https://doi.org/10.1016/j.ccr.2009.02.015

107. James SL. Role of nitric oxide in parasitic infections. Microbiol Rev 1995; 59(4):533-547. DOI: https://doi.org/10.1128/mr.59.4.533-547.1995

108. Bhutani N, Kajal P. Hepatic echinococcosis: A review. Ann Med Surg (Lond) 2018; 36:99-105. DOI: https://doi.org/10.1016/j.amsu.2018.10.032

109. Williamson SM, Robertson AP, Brown L, Williams T, Woods DJ, Martin RJ, Sattelle DB, Wolstenholme AJ. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: Formation of two distinct drug targets by varying the relative expression levels of two subunits. PLoS Pathog 2009; 5(7):e1000517. DOI: https://doi.org/10.1371/journal.ppat.1000517

110. Greenberg RM. Ion channels and drug transporters as targets for anthelmintics. Curr Clin Microbiol Rep 2014; 1(3-4):51-60. DOI: https://doi.org/10.1007/s40588-014-0007-6
How to Cite
Rossini, F. L. de. (2023). [Retracted] Parasite-Derived Components: An Updated Review of the Toxicological and Pharmacological Effects on the Host. Science Insights, 42(6), 951–961. https://doi.org/10.15354/si.23.re551