##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jan 30, 2024

Sabine Zur Schlemmer  

Abstract

Artificial intelligence (AI) has brought about a paradigm shift in numerous industries and is persistently altering the methodology employed in scientific inquiry. Although AI has the potential to streamline specific facets of the scientific method, detractors contend that its integration could potentially erode the foundations of science. A potential issue arises when an excessive dependence on AI for data analysis and experimentation results in the erosion of human creativity and intuition as pivotal components in scientific breakthroughs. The propensity for fortuitous discoveries and innovative concepts to arise from ostensibly unrelated disciplines may be impeded by AI’s emphasis on identifying patterns in preexisting data sets. Moreover, algorithms employed in AI systems that rely on training data possess an intrinsic bias, which may introduce intangible prejudices into scientific investigation. Furthermore, it is critical to specify that AI is incapable of engaging in debates or comprehending profound philosophical inquiries pertaining to the fundamental principles that govern our universe. As a result, although AI has the potential to significantly aid scientists in their endeavors, it must be implemented with prudence to guarantee that it enhances rather than erodes the fundamental tenets and character of scientific investigation.


 

##plugins.themes.bootstrap3.article.details##

Keywords

Artificial Intelligence, Scientific Research, Undermining, Future

References
1. Biswas A, Kumari A, Gaikwad DS, Pandey DK. Revolutionizing biological science: The synergy of genomics in health, bioinformatics, agriculture, and artificial intelligence. OMICS 2023; 27(12):550-569. DOI: https://doi.org/10.1089/omi.2023.0197

2. Aldoseri A, Al-Khalifa KN, Hamouda AM. Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and chal-lenges. Appl Sci 2023; 13(12):7082. DOI: https://doi.org/10.3390/app13127082

3. Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F, Qiu CW, Qiu J, Hua K, Su W, Wu J, Xu H, Han Y, Fu C, Yin Z, Liu M, Roepman R, Dietmann S, Virta M, Kengara F, Zhang Z, Zhang L, Zhao T, Dai J, Yang J, Lan L, Luo M, Liu Z, An T, Zhang B, He X, Cong S, Liu X, Zhang W, Lewis JP, Tiedje JM, Wang Q, An Z, Wang F, Zhang L, Huang T, Lu C, Cai Z, Wang F, Zhang J. Artificial intelli-gence: A powerful paradigm for scientific research. Innovation (Camb) 2021; 2(4):100179. DOI: https://doi.org/10.1016/j.xinn.2021.100179

4. Taye MM. Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions. Computers 2023; 12(5):91. DOI: https://doi.org/10.3390/computers12050091

5. Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 2019; 7:e7702. DOI: https://doi.org/10.7717/peerj.7702

6. Rane N, Choudhary S, Rane J. Explainable artificial intelligence (XAI) approaches for transparency and accountability in financial decision-making. SSRN Electr J 2023; DOI: https://doi.org/10.2139/ssrn.4640316

7. Krenn M, Pollice R, Guo SY, Aldeghi M, Cer-vera-Lierta A, Friederich P, Dos Passos Gomes G, Häse F, Jinich A, Nigam A, Yao Z, Aspuru-Guzik A. On scientific understanding with artificial intelligence. Nat Rev Phys 2022; 4(12):761-769. DOI: https://doi.org/10.1038/s42254-022-00518-3

8. Wang H, Fu T, Du Y, Gao W, Huang K, Liu Z, Chandak P, Liu S, Van Katwyk P, Deac A, Anandkumar A, Bergen K, Gomes CP, Ho S, Kohli P, Lasenby J, Leskovec J, Liu TY, Manrai A, Marks D, Ramsundar B, Song L, Sun J, Tang J, Veličković P, Welling M, Zhang L, Coley CW, Bengio Y, Zitnik M. Scientific discovery in the age of artificial intelli-gence. Nature 2023; 620(7972):47-60. DOI: https://doi.org/10.1038/s41586-023-06221-2. Erra-tum in: Nature 2023; 621(7978):E33.

9. Salvagno M, Taccone FS, Gerli AG. Can artificial intelligence help for scientific writing? Crit Care 2023; 27(1):75. DOI: https://doi.org/10.1186/s13054-023-04380-2. Erra-tum in: Crit Care 2023; 27(1):99.

10. Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: A call for open science. Patterns (N Y) 2021; 2(10):100347. DOI: https://doi.org/10.1016/j.patter.2021.100347

11. Perifanis NA, Kitsios F. Investigating the influence of artificial intelligence on business value in the digital era of strategy: A literature review. Infor-mation 2023; 14(2):85. DOI: https://doi.org/10.3390/info14020085

12. Lambert SI, Madi M, Sopka S, Lenes A, Stange H, Buszello CP, Stephan A. An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. NPJ Digit Med 2023; 6(1):111. DOI: https://doi.org/10.1038/s41746-023-00852-5. Erra-tum in: NPJ Digit Med 2023; 6(1):125.

13. Dakka MA, Nguyen TV, Hall JMM, Diakiw SM, VerMilyea M, Linke R, Perugini M, Perugini D. Automated detection of poor-quality data: Case studies in healthcare. Sci Rep 2021; 11(1):18005. DOI: https://doi.org/10.1038/s41598-021-97341-0

14. Nazer LH, Zatarah R, Waldrip S, Ke JXC, Mou-kheiber M, Khanna AK, Hicklen RS, Moukheiber L, Moukheiber D, Ma H, Mathur P. Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digit Health 2023; 2(6):e0000278. DOI: https://doi.org/10.1371/journal.pdig.0000278

15. Jalali MS, DiGennaro C, Guitar A, Lew K, Rah-mandad H. Evolution and reproducibility of simula-tion modeling in epidemiology and health policy over half a century. Epidemiol Rev 2022; 43(1):166-175. DOI: https://doi.org/10.1093/epirev/mxab006

16. Graziani M, Dutkiewicz L, Calvaresi D, Amorim JP, Yordanova K, Vered M, Nair R, Abreu PH, Blanke T, Pulignano V, Prior JO, Lauwaert L, Reijers W, Depeursinge A, Andrearczyk V, Müller H. A global taxonomy of interpretable AI: Unifying the termi-nology for the technical and social sciences. Artif Intell Rev 2023; 56(4):3473-3504. DOI: https://doi.org/10.1007/s10462-022-10256-8

17. Birhane A, Kasirzadeh A, Leslie D, Sandra W. Science in the age of large language models. Nat Rev Phys 2023; 5:277-280. DOI: https://doi.org/10.1038/s42254-023-00581-4

18. Wagner G, Lukyanenko R, Paré G. Artificial intel-ligence and the conduct of literature reviews. J Inform Technol 2022; 37(2):209-226. DOI: https://doi.org/10.1177/02683962211048201
How to Cite
Schlemmer, S. Z. (2024). Is It Possible for Artificial Intelligence to Undermine the Root of Science?. Science Insights, 44(1), 1229–1234. https://doi.org/10.15354/si.24.re881
Section
Review