##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Aug 29, 2024

Sheila Moffitt Mason  

Abstract

Human cardiac development and regeneration modeling are crucial areas of research that hold immense promise for advancing regenerative medicine and treating cardiovascular diseases. Understanding the intricate process of cardiac development, from the formation of the primitive heart tube to the maturation of the fetal heart, provides insights into potential therapeutic strategies for cardiac regeneration. This article explores the key stages of cardiac development, factors influencing cardiac regeneration, current models for studying regenerative processes, challenges and opportunities in regenerative medicine, future directions in cardiac development research, clinical applications of regenerative modeling, and the implications for healthcare. By delving into these aspects, researchers and healthcare professionals can gain a deeper understanding of how to harness the regenerative potential of the human heart for improved patient outcomes.

##plugins.themes.bootstrap3.article.details##

Keywords

Human Heart, Cardiac Development, Regeneration, Modeling, Therapeutics

References
1. Mathew P, Bordoni B. Embryology, Heart. [Updated 2023 Aug 14]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537313/

2. Christoffels V, Jensen B. Cardiac morphogenesis: Specification of the four-chambered heart. Cold Spring Harb Perspect Biol 2020; 12(10):a037143. DOI: https://doi.org/10.1101/cshperspect.a037143

3. Liu Y, Chen S, Zühlke L, Black GC, Choy MK, Li N, Keavney BD. Global birth prevalence of congenital heart defects 1970-2017: Updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 2019; 48(2):455-463. DOI: https://doi.org/10.1093/ije/dyz009

4. Wu W, He J, Shao X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. Medicine (Baltimore) 2020; 99(23):e20593. DOI: https://doi.org/10.1097/MD.0000000000020593

5. Hashimoto H, Olson EN, Bassel-Duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol 2018; 15(10):585-600. DOI: https://doi.org/10.1038/s41569-018-0036-6

6. Kloesel B, DiNardo JA, Body SC. Cardiac embryology and molecular mechanisms of congenital heart disease: A primer for anesthesiologists. Anesth Analg 2016; 123(3):551-569. DOI: https://doi.org/10.1213/ANE.0000000000001451

7. Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (2) Septation of the atriums and ventricles. Heart 2003; 89(8):949-958. DOI: https://doi.org/10.1136/heart.89.8.949

8. Saxton A, Chaudhry R, Manna B. Anatomy, Thorax, Heart Right Coronary Arteries. [Updated 2023 Jul 24]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537357/

9. Hinton RB, Yutzey KE. Heart valve structure and function in development and disease. Annu Rev Physiol 2011; 73:29-46. DOI: https://doi.org/10.1146/annurev-physiol-012110-142145

10. Patra C, Zhang X, Brady MF. Physiology, Bundle of His. [Updated 2023 May 1]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK531498/

11. Ripa R, George T, Shumway KR, et al. Physiology, Cardiac Muscle. [Updated 2023 Jul 30]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK572070/

12. Tan CMJ, Lewandowski AJ. The transitional heart: From early embryonic and fetal development to neonatal life. Fetal Diagn Ther 2020; 47(5):373-386. DOI: https://doi.org/10.1159/000501906

13. Chaudhry R, Miao JH, Rehman A. Physiology, Cardiovascular. [Updated 2022 Oct 16]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available at: https://www.ncbi.nlm.nih.gov/books/NBK493197/

14. Nesselmann C, Ma N, Bieback K, Wagner W, Ho A, Konttinen YT, Zhang H, Hinescu ME, Steinhoff G. Mesenchymal stem cells and cardiac repair. J Cell Mol Med 2008; 12(5B):1795-810. DOI: https://doi.org/10.1111/j.1582-4934.2008.00457.x. Erratum in: J Cell Mol Med 2008; 12(6B):2875.

15. Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis 2020; 11(5):349. DOI: https://doi.org/10.1038/s41419-020-2542-9

16. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 2015; 116(8):1413-1430. DOI: https://doi.org/10.1161/CIRCRESAHA.116.303614

17. Youssef AA, Ross EG, Bolli R, Pepine CJ, Leeper NJ, Yang PC. The promise and challenge of induced pluripotent stem cells for cardiovascular applications. JACC Basic Transl Sci 2016; 1(6):510-523. DOI: https://doi.org/10.1016/j.jacbts.2016.06.010

18. Xiang M, Lu M, Quan J, Xu M, Meng D, Cui A, Li N, Liu Y, Lu P, Kang X, Wang X, Sun N, Zhao M, Liang Q, Le L, Wang X, Zhang J, Chen S. Direct in vivo application of induced pluripotent stem cells is feasible and can be safe. Theranostics 2019; 9(1):290-310. DOI: https://doi.org/10.7150/thno.28671

19. Rikhtegar R, Pezeshkian M, Dolati S, Safaie N, Afrasiabi Rad A, Mahdipour M, Nouri M, Jodati AR, Yousefi M. Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacother 2019; 109:304-313. DOI: https://doi.org/10.1016/j.biopha.2018.10.065

20. Wang J, An M, Haubner BJ, Penninger JM. Cardiac regeneration: Options for repairing the injured heart. Front Cardiovasc Med 2023; 9:981982. DOI: https://doi.org/10.3389/fcvm.2022.981982

21. National Research Council (US) and Institute of Medicine (US) Committee on the Biological and Biomedical Applications of Stem Cell Research. Stem Cells and the Future of Regenerative Medicine. Washington (DC): National Academies Press (US); 2002. CHAPTER THREE, Embryonic Stem Cells. Available at: https://www.ncbi.nlm.nih.gov/books/NBK223690/

22. du Pré BC, Doevendans PA, van Laake LW. Stem cells for cardiac repair: An introduction. J Geriatr Cardiol 2013; 10(2):186-97. DOI: https://doi.org/10.3969/j.issn.1671-5411.2013.02.003

23. Uygur A, Lee RT. Mechanisms of cardiac regeneration. Dev Cell 2016; 36(4):362-374. DOI: https://doi.org/10.1016/j.devcel.2016.01.018

24. Pourtaji A, Jahani V, Moallem SMH, Karimani A, Mohammadpour AH. Application of G-CSF in congestive heart failure treatment. Curr Cardiol Rev 2019; 15(2):83-90. DOI: https://doi.org/10.2174/1573403X14666181031115118

25. Bernitz JM, Daniel MG, Fstkchyan YS, Moore K. Granulocyte colony-stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice. Blood 2017; 129(14):1901-1912. DOI: https://doi.org/10.1182/blood-2016-11-752923

26. Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. The potential properties of natural compounds in cardiac stem cell activation: Their role in myocardial regeneration. Nutrients 2021; 13(1):275. DOI: https://doi.org/10.3390/nu13010275

27. Raynaud CM, Ahmad FS, Allouba M, Abou-Saleh H, Lui KO, Yacoub M. Reprogramming for cardiac regeneration. Glob Cardiol Sci Pract 2014; 2014(3):309-329. DOI: https://doi.org/10.5339/gcsp.2014.44

28. Mancuso A, Barone A, Cristiano MC, Cianflone E, Fresta M, Paolino D. Cardiac stem cell-loaded delivery systems: A new challenge for myocardial tissue regeneration. Int J Mol Sci 2020; 21(20):7701. DOI: https://doi.org/10.3390/ijms21207701

29. Sharma V, Dash SK, Govarthanan K, Gahtori R, Negi N, Barani M, Tomar R, Chakraborty S, Mathapati S, Bishi DK, Negi P, Dua K, Singh SK, Gundamaraju R, Dey A, Ruokolainen J, Thakur VK, Kesari KK, Jha NK, Gupta PK, Ojha S. Recent advances in cardiac tissue engineering for the management of myocardium infarction. Cells 2021; 10(10):2538. DOI: https://doi.org/10.3390/cells10102538

30. Almeida SO, Skelton RJ, Adigopula S, Ardehali R. Arrhythmia in stem cell transplantation. Card Electrophysiol Clin 2015; 7(2):357-370. DOI: https://doi.org/10.1016/j.ccep.2015.03.012

31. Johnson RD, Lei M, McVey JH, Camelliti P. Human myofibroblasts increase the arrhythmogenic potential of human induced pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 2023; 80(9):276. DOI: https://doi.org/10.1007/s00018-023-04924-3

32. White SJ, Chong JJH. Growth factor therapy for cardiac repair: An overview of recent advances and future directions. Biophys Rev 2020; 12(4):805-815. DOI: https://doi.org/10.1007/s12551-020-00734-0

33. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78(6):539-552. DOI: https://doi.org/10.1016/j.bcp.2009.04.029

34. Soliman AM, Barreda DR. Acute inflammation in tissue healing. Int J Mol Sci 2022; 24(1):641. DOI: https://doi.org/10.3390/ijms24010641

35. Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res 2010; 31(1):158-75. DOI: https://doi.org/10.1097/BCR.0b013e3181c7ed82

36. Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A, Saparov A. Biomaterials loaded with growth factors/cytokines and stem cells for cardiac tissue regeneration. Int J Mol Sci 2020; 21(17):5952. DOI: https://doi.org/10.3390/ijms21175952

37. Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The multifunctional contribution of FGF signaling to cardiac development, homeostasis, disease and repair. Front Cell Dev Biol 2021; 9:672935. DOI: https://doi.org/10.3389/fcell.2021.672935

38. Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, Carriquiry-Chequer PA, Valencia-Gómez LE, Matthews ER, Gómez-Flores V, Simental-Mendía M, Delgado-Gonzalez P, Delgado-Gallegos JL, Padilla-Rivas GR, Islas JF. Artificial scaffolds in cardiac tissue engineering. Life (Basel) 2022; 12(8):1117. DOI: https://doi.org/10.3390/life12081117

39. Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci U S A 2016; 113(2):338-343. DOI: https://doi.org/10.1073/pnas.1523918113

40. Major RJ, Poss KD. Zebrafish heart regeneration as a model for cardiac tissue repair. Drug Discov Today Dis Models 2007; 4(4):219-225. DOI: https://doi.org/10.1016/j.ddmod.2007.09.002

41. Ryan R, Moyse BR, Richardson RJ. Zebrafish cardiac regeneration-looking beyond cardiomyocytes to a complex microenvironment. Histochem Cell Biol 2020; 154(5):533-548. DOI: https://doi.org/10.1007/s00418-020-01913-6

42. Suzuki Y, Yeung AC, Ikeno F. The representative porcine model for human cardiovascular disease. J Biomed Biotechnol 2011; 2011:195483. DOI: https://doi.org/10.1155/2011/195483

43. von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. DOI: https://doi.org/10.3389/fphar.2024.1408679

44. Wang L, Hu D, Xu J, Hu J, Wang Y. Complex in vitro model: A transformative model in drug development and precision medicine. Clin Transl Sci 2023; 17(2):e13695. DOI: https://doi.org/10.1111/cts.13695

45. Khan A, Kumari P, Kumari N, Shaikh U, Ekhator C, Halappa Nagaraj R, Yadav V, Khan AW, Lazarevic S, Bharati B, Lakshmipriya Vetrivendan G, Mulmi A, Mohamed H, Ullah A, Kadel B, Bellegarde SB, Rehman A. Biomimetic approaches in cardiac tissue engineering: Replicating the native heart microenvironment. Cureus 2023; 15(8):e43431. DOI: https://doi.org/10.7759/cureus.43431

46. Paik DT, Chandy M, Wu JC. Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev 2020; 72(1):320-342. DOI: https://doi.org/10.1124/pr.116.013003

47. Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu R. Applications of 3D bioprinting in tissue engineering and regenerative medicine. J Clin Med 2021; 10(21):4966. DOI: https://doi.org/10.3390/jcm10214966

48. Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: Progress and promise of cardiac tissue engineering. NPJ Regen Med 2021; 6(1):30. DOI: https://doi.org/10.1038/s41536-021-00140-4

49. Välimäki MJ, Ruskoaho HJ. Targeting GATA4 for cardiac repair. IUBMB Life 2020; 72(1):68-79. DOI: https://doi.org/10.1002/iub.2150

50. Lai SL, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: A comparative point of view. Cell Mol Life Sci 2019; 76(7):1365-1380. DOI: https://doi.org/10.1007/s00018-018-2995-5

51. Parmacek MS. Cardiac stem cells and progenitors: Developmental biology and therapeutic challenges. Trans Am Clin Climatol Assoc 2006; 117:239-255; discussion 255-256.

52. Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 2017; 121(7):749-770. DOI: https://doi.org/10.1161/CIRCRESAHA.117.311059

53. Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23(1):9. DOI: https://doi.org/10.1186/s12943-023-01925-5. Erratum in: Mol Cancer. 2024 Feb 27;23(1):43. DOI: https://doi.org/10.1186/s12943-024-01961-9

54. Lux CT, Scharenberg AM. Therapeutic gene editing safety and specificity. Hematol Oncol Clin North Am 2017; 31(5):787-795. DOI: https://doi.org/10.1016/j.hoc.2017.05.002

55. Chu P, Agapito-Tenfen SZ. Unintended genomic outcomes in current and next generation gm techniques: A systematic review. Plants (Basel) 2022; 11(21):2997. DOI: https://doi.org/10.3390/plants11212997

56. Xu M, Song J. Targeted therapy in cardiovascular disease: A precision therapy era. Front Pharmacol 2021; 12:623674. DOI: https://doi.org/10.3389/fphar.2021.623674. Erratum in: Front Pharmacol 2023; 14:1145460. DOI: https://doi.org/10.3389/fphar.2023.1145460

57. Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7(1):272. DOI: https://doi.org/10.1038/s41392-022-01134-4

58. Rogozinski N, Yanez A, Bhoi R, Lee MY, Yang H. Current methods for fabricating 3D cardiac engineered constructs. iScience 2022; 25(5):104330. DOI: https://doi.org/10.1016/j.isci.2022.104330

59. Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent advances in gene therapy for cardiac tissue regeneration. Int J Mol Sci 2021; 22(17):9206. DOI: https://doi.org/10.3390/ijms22179206
How to Cite
Mason, S. M. (2024). Human Cardiac Development and Regeneration Modeling. Science Insights, 45(2), 1465–1474. https://doi.org/10.15354/si.24.re1039
Section
Review