Water Splitting for Hydrogen: A Promising Way to Slow Down Greenhouse Gas Emissions
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Water splitting for hydrogen production represents an optimistic technological advancement that has the potential to mitigate greenhouse gas emissions. Utilizing renewable energy sources, such as solar or wind power, to electrolyze water into its fundamental components—hydrogen and oxygen—ensures that no detrimental greenhouse gases are emitted into the atmosphere during the process. Hydrogen has been widely recognized as a pure energy source owing to its high energy density and its capacity to generate electricity via fuel cells without emitting carbon emissions. The expansion of the hydrogen economy has the potential to substantially diminish our dependence on fossil fuels and decrease the overall carbon footprint across multiple sectors, including transportation and manufacturing. Although challenges pertaining to scalability and cost-effectiveness remain, ongoing research and development in water splitting technologies presents significant potential for addressing climate change and fostering a more sustainable future.
##plugins.themes.bootstrap3.article.details##
Water Splitting, Hydrogen, Greenhouse Gases, Environmental Protection, Sustainability
No funding source declared.
Alotaibi, N. H., Shah, J. H., Nisa, M. U., Mohammad, S., Özcan, H. G., Abid, A. G., & Allakhverdiev, S. I. (2024). Catalytic enhancement of graphene oxide by trace molybdenum oxide nanoparticles doping: Optimized electrocatalyst for green hydrogen production. International Journal of Hydrogen Energy, 62, 488–497. https://doi.org/10.1016/j.ijhydene.2024.03.032
AlZohbi, G. (2022). Green hydrogen generation: recent advances and challenges. IOP Conference Series Earth and Environmental Science, 1050(1), 012003. https://doi.org/10.1088/1755-1315/1050/1/012003
Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 33(15), 4013–4029. https://doi.org/10.1016/j.ijhydene.2008.05.047
Baykara, S. (2004). Hydrogen as fuel: a critical technology? International Journal of Hydrogen Energy, 30(5), 545–553. https://doi.org/10.1016/j.ijhydene.2004.06.010
Bui, H. T., Lam, N. D., Linh, D. C., Mai, N. T., Chang, H., Han, S., Oanh, V. T. K., Pham, A. T., Patil, S. A., Tung, N. T., & Shrestha, N. K. (2023). Escalating catalytic activity for hydrogen evolution reaction on MOSE2@Graphene functionalization. Nanomaterials, 13(14), 2139. https://doi.org/10.3390/nano13142139
Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A brief review of hydrogen production methods and their challenges. Energies, 16(3), 1141. https://doi.org/10.3390/en16031141
Dincer, I., & Rosen, M. A. (2011). Sustainability aspects of hydrogen and fuel cell systems. Energy Sustainable Development/Energy for Sustainable Development, 15(2), 137–146. https://doi.org/10.1016/j.esd.2011.03.006
Dincer, I., & Zamfirescu, C. (2012a). Renewable-energy-based multigeneration systems. International Journal of Energy Research, 36(15), 1403–1415. https://doi.org/10.1002/er.2882
Dincer, I., & Zamfirescu, C. (2012b). Sustainable hydrogen production options and the role of IAHE. International Journal of Hydrogen Energy, 37(21), 16266–16286. https://doi.org/10.1016/j.ijhydene.2012.02.133
Dodds, P. E., Staffell, I., Hawkes, A. D., Li, F., Grünewald, P., McDowall, W., & Ekins, P. (2015). Hydrogen and fuel cell technologies for heating: A review. International Journal of Hydrogen Energy, 40(5), 2065–2083. https://doi.org/10.1016/j.ijhydene.2014.11.059
Ebuehi, O. N., Abhulimen, K., & Adebesin, D. O. (2021). Modelling Production of Renewable Energy from Water Splitting High Thermal Electrolysis Processes. European Journal of Engineering and Technology Research, 6(3), 79–86. https://doi.org/10.24018/ejeng.2021.6.3.2391
Hossain, A., Sakthipandi, K., Ullah, A. K. M. A., & Roy, S. (2019). Recent Progress and Approaches on Carbon-Free Energy from Water Splitting. Nano-Micro Letters, 11(1). https://doi.org/10.1007/s40820-019-0335-4
Karuturi, S. K., Shen, H., Sharma, A., Beck, F. J., Varadhan, P., Duong, Narangari, P. R., Zhang, D., Wan, Y., He, J., Tan, H. H., Jagadish, C., & Catchpole, K. (2020). Solar water splitting: over 17% efficiency Stand-Alone solar water splitting enabled by Perovskite-Silicon tandem absorbers (Adv. Energy Mater. 28/2020). Advanced Energy Materials, 10(28). https://doi.org/10.1002/aenm.202070122
Komar, I., & Lalić, B. (2015). Sea transport air pollution. In InTech eBooks. https://doi.org/10.5772/59720
Koros, W. J., & Lively, R. P. (2012). Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes. AIChE Journal, 58(9), 2624-2633. https://doi.org/10.1002/aic.13888
Krishnamoorthy, V., Bangolla, H. K., Chen, C., Huang, Y., Cheng, C., Ulaganathan, R. K., Sankar, R., Lee, K., Du, H., Chen, L., Chen, K., & Chen, R. (2024). Efficient hydrogen evolution reaction in 2H-MOS2 basal planes enhanced by surface electron accumulation. Catalysts, 14(1), 50. https://doi.org/10.3390/catal14010050
Nicoletti, G., Arcuri, N., Nicoletti, G., & Bruno, R. (2014). A technical and environmental comparison between hydrogen and some fossil fuels. Energy Conversion and Management, 89, 205–213. https://doi.org/10.1016/j.enconman.2014.09.057
Stark, A. K., & Klausner, J. F. (2018). An R&D Strategy to Decouple Energy from Water. Joule, 2(6), 1202. https://doi.org/10.1016/j.joule.2018.05.013
Turner, J., Sverdrup, G., Mann, M. K., Maness, P., Kroposki, B., Ghirardi, M., Evans, R. J., & Blake, D. (2007). Renewable hydrogen production. International Journal of Energy Research, 32(5), 379–407. https://doi.org/10.1002/er.1372
Woudstra, N., Van Der Stelt, T. P., & Hemmes, K. (2006). The thermodynamic evaluation and optimization of fuel cell systems. Journal of Fuel Cell Science and Technology, 3(2), 155–164. https://doi.org/10.1115/1.2174064
Zhu, Z., Yang, X., Liu, J., Zhu, M., & Xu, X. (2023). Handily etching nickel foams into catalyst-substrate fusion self-stabilized electrodes toward industrial-level water electrolysis. Carbon Energy, 5(10). https://doi.org/10.1002/cey2.327

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.