How Can We Map Our Brains?
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Understanding the human brain—arguably the most complex structure in the known universe—has long been a goal of science, medicine, and philosophy. Recent technological advancements have made the ambitious task of brain mapping more plausible than ever before. This essay explores the multidimensional approach needed to map the brain, emphasizing the roles of neuroimaging technologies, computational modeling, genetics, and artificial intelligence. It argues that while we are making rapid progress, truly mapping the human brain requires not just technical precision but also ethical mindfulness, global collaboration, and interdisciplinary innovation. Brain mapping is not only a scientific journey but also a humanistic one, requiring us to ask who we are and how our minds work.
##plugins.themes.bootstrap3.article.details##
Brain, Mapping, Neuroimaging Network, Multidimensional Modeling, Global Mind
No funding sources declared.
Ball, S., Gilbert, T. L., & Overly, C. C. (2012). The Human Brain Online: An open resource for advancing Brain research. PLoS Biology, 10(12), e1001453. https://doi.org/10.1371/journal.pbio.1001453
Chen, J., Yu, K., Bi, Y., Ji, X., & Zhang, D. (2024). Strategic Integration: A Cross-Disciplinary review of the FNIRS-EEG Dual-Modality Imaging System for delivering multimodal neuroimaging to applications. Brain Sciences, 14(10), 1022. https://doi.org/10.3390/brainsci14101022
Collins, E., Chishti, O., Obaid, S., McGrath, H., King, A., Shen, X., Arora, J., Papademetris, X., Constable, R. T., Spencer, D. D., & Zaveri, H. P. (2024). Mapping the structure-function relationship along macroscale gradients in the human brain. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-51395-6
Elam, J. S., Glasser, M. F., Harms, M. P., Sotiropoulos, S. N., Andersson, J. L., Burgess, G. C., Curtiss, S. W., Oostenveld, R., Larson-Prior, L. J., Schoffelen, J., Hodge, M. R., Cler, E. A., Marcus, D. M., Barch, D. M., Yacoub, E., Smith, S. M., Ugurbil, K., & Van Essen, D. C. (2021). The Human Connectome Project: A retrospective. NeuroImage, 244, 118543. https://doi.org/10.1016/j.neuroimage.2021.118543
Fiani, B., Pasko, K. B. D., Sarhadi, K., & Covarrubias, C. (2021). Current uses, emerging applications, and clinical integration of artificial intelligence in neuroradiology. Reviews in the Neurosciences, 33(4), 383–395. https://doi.org/10.1515/revneuro-2021-0101
Fox, P. T. (1993). Human brain mapping: A convergence of disciplines. Human Brain Mapping, 1(1), 1–2. https://doi.org/10.1002/hbm.460010102
Frackowiak, R., & Markram, H. (2015). The future of human cerebral cartography: a novel approach. Philosophical Transactions of the Royal Society B Biological Sciences, 370(1668), 20140171. https://doi.org/10.1098/rstb.2014.0171
Gierer, A. (2008). Brain, mind and limitations of a scientific theory of human consciousness. BioEssays, 30(5), 499–505. https://doi.org/10.1002/bies.20743
Khorev, V., Kurkin, S., Badarin, A., Antipov, V., Pitsik, E., Andreev, A., Grubov, V., Drapkina, O., Kiselev, A., & Hramov, A. (2024). Review on the use of Brain Computer Interface Rehabilitation Methods for treating mental and Neurological Conditions. Journal of Integrative Neuroscience, 23(7). https://doi.org/10.31083/j.jin2307125
Loosen, A. M., Kato, A., & Gu, X. (2024). Revisiting the role of computational neuroimaging in the era of integrative neuroscience. Neuropsychopharmacology, 50(1), 103–113. https://doi.org/10.1038/s41386-024-01946-8
Noor, M. B. T., Zenia, N. Z., Kaiser, M. S., Mamun, S. A., & Mahmud, M. (2020). Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Informatics, 7(1). https://doi.org/10.1186/s40708-020-00112-2
Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen, S. A., Slaughterbeck, C. R., Wakeman, W., Li, Y., Feng, D., Ho, A.,. Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214. https://doi.org/10.1038/nature13186
Puri, S., Shaheen, M., & Grover, B. (2023). Nutrition and cognitive health: A life course approach. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1023907
Sporns, O. (2013). The human connectome: Origins and challenges. NeuroImage, 80, 53–61. https://doi.org/10.1016/j.neuroimage.2013.03.023
Tharin, S., & Golby, A. (2007). Functional brain mapping and its applications to neurosurgery. Operative Neurosurgery, 60(4), 185–202. https://doi.org/10.1227/01.neu.0000255386.95464.52
Toga, A. W., Clark, K. A., Thompson, P. M., Shattuck, D. W., & Van Horn, J. D. (2012). Mapping the human connectome. Neurosurgery, 71(1), 1–5. https://doi.org/10.1227/neu.0b013e318258e9ff
Uludağ, K., & Roebroeck, A. (2014). General overview on the merits of multimodal neuroimaging data fusion. NeuroImage, 102, 3–10. https://doi.org/10.1016/j.neuroimage.2014.05.018
Voigtlaender, S., Pawelczyk, J., Geiger, M., Vaios, E. J., Karschnia, P., Cudkowicz, M., Dietrich, J., Haraldsen, I. R. J. H., Feigin, V., Owolabi, M., White, T. L., Świeboda, P., Farahany, N., Natarajan, V., & Winter, S. F. (2024). Artificial intelligence in neurology: opportunities, challenges, and policy implications. Journal of Neurology, 271(5), 2258–2273. https://doi.org/10.1007/s00415-024-12220-8

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.