##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Apr 30, 2025

Pedro J. G. Neto  

Abstract

Understanding the human brain—arguably the most complex structure in the known universe—has long been a goal of science, medicine, and philosophy. Recent technological advancements have made the ambitious task of brain mapping more plausible than ever before. This essay explores the multidimensional approach needed to map the brain, emphasizing the roles of neuroimaging technologies, computational modeling, genetics, and artificial intelligence. It argues that while we are making rapid progress, truly mapping the human brain requires not just technical precision but also ethical mindfulness, global collaboration, and interdisciplinary innovation. Brain mapping is not only a scientific journey but also a humanistic one, requiring us to ask who we are and how our minds work.

##plugins.themes.bootstrap3.article.details##

Keywords

Brain, Mapping, Neuroimaging Network, Multidimensional Modeling, Global Mind

Supporting Agencies

No funding sources declared.

References
Amunts, K., Knoll, A. C., Lippert, T., Pennartz, C. M. A., Ryvlin, P., Destexhe, A., Jirsa, V. K., D’Angelo, E., & Bjaalie, J. G. (2019). The Human Brain Project—Synergy between neuroscience, computing, informatics, and brain-inspired technologies. PLoS Biology, 17(7), e3000344. https://doi.org/10.1371/journal.pbio.3000344

Ball, S., Gilbert, T. L., & Overly, C. C. (2012). The Human Brain Online: An open resource for advancing Brain research. PLoS Biology, 10(12), e1001453. https://doi.org/10.1371/journal.pbio.1001453

Chen, J., Yu, K., Bi, Y., Ji, X., & Zhang, D. (2024). Strategic Integration: A Cross-Disciplinary review of the FNIRS-EEG Dual-Modality Imaging System for delivering multimodal neuroimaging to applications. Brain Sciences, 14(10), 1022. https://doi.org/10.3390/brainsci14101022

Collins, E., Chishti, O., Obaid, S., McGrath, H., King, A., Shen, X., Arora, J., Papademetris, X., Constable, R. T., Spencer, D. D., & Zaveri, H. P. (2024). Mapping the structure-function relationship along macroscale gradients in the human brain. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-51395-6

Elam, J. S., Glasser, M. F., Harms, M. P., Sotiropoulos, S. N., Andersson, J. L., Burgess, G. C., Curtiss, S. W., Oostenveld, R., Larson-Prior, L. J., Schoffelen, J., Hodge, M. R., Cler, E. A., Marcus, D. M., Barch, D. M., Yacoub, E., Smith, S. M., Ugurbil, K., & Van Essen, D. C. (2021). The Human Connectome Project: A retrospective. NeuroImage, 244, 118543. https://doi.org/10.1016/j.neuroimage.2021.118543

Fiani, B., Pasko, K. B. D., Sarhadi, K., & Covarrubias, C. (2021). Current uses, emerging applications, and clinical integration of artificial intelligence in neuroradiology. Reviews in the Neurosciences, 33(4), 383–395. https://doi.org/10.1515/revneuro-2021-0101

Fox, P. T. (1993). Human brain mapping: A convergence of disciplines. Human Brain Mapping, 1(1), 1–2. https://doi.org/10.1002/hbm.460010102

Frackowiak, R., & Markram, H. (2015). The future of human cerebral cartography: a novel approach. Philosophical Transactions of the Royal Society B Biological Sciences, 370(1668), 20140171. https://doi.org/10.1098/rstb.2014.0171

Gierer, A. (2008). Brain, mind and limitations of a scientific theory of human consciousness. BioEssays, 30(5), 499–505. https://doi.org/10.1002/bies.20743

Khorev, V., Kurkin, S., Badarin, A., Antipov, V., Pitsik, E., Andreev, A., Grubov, V., Drapkina, O., Kiselev, A., & Hramov, A. (2024). Review on the use of Brain Computer Interface Rehabilitation Methods for treating mental and Neurological Conditions. Journal of Integrative Neuroscience, 23(7). https://doi.org/10.31083/j.jin2307125

Loosen, A. M., Kato, A., & Gu, X. (2024). Revisiting the role of computational neuroimaging in the era of integrative neuroscience. Neuropsychopharmacology, 50(1), 103–113. https://doi.org/10.1038/s41386-024-01946-8

Noor, M. B. T., Zenia, N. Z., Kaiser, M. S., Mamun, S. A., & Mahmud, M. (2020). Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain Informatics, 7(1). https://doi.org/10.1186/s40708-020-00112-2

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen, S. A., Slaughterbeck, C. R., Wakeman, W., Li, Y., Feng, D., Ho, A.,. Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214. https://doi.org/10.1038/nature13186

Puri, S., Shaheen, M., & Grover, B. (2023). Nutrition and cognitive health: A life course approach. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1023907

Sporns, O. (2013). The human connectome: Origins and challenges. NeuroImage, 80, 53–61. https://doi.org/10.1016/j.neuroimage.2013.03.023

Tharin, S., & Golby, A. (2007). Functional brain mapping and its applications to neurosurgery. Operative Neurosurgery, 60(4), 185–202. https://doi.org/10.1227/01.neu.0000255386.95464.52

Toga, A. W., Clark, K. A., Thompson, P. M., Shattuck, D. W., & Van Horn, J. D. (2012). Mapping the human connectome. Neurosurgery, 71(1), 1–5. https://doi.org/10.1227/neu.0b013e318258e9ff

Uludağ, K., & Roebroeck, A. (2014). General overview on the merits of multimodal neuroimaging data fusion. NeuroImage, 102, 3–10. https://doi.org/10.1016/j.neuroimage.2014.05.018

Voigtlaender, S., Pawelczyk, J., Geiger, M., Vaios, E. J., Karschnia, P., Cudkowicz, M., Dietrich, J., Haraldsen, I. R. J. H., Feigin, V., Owolabi, M., White, T. L., Świeboda, P., Farahany, N., Natarajan, V., & Winter, S. F. (2024). Artificial intelligence in neurology: opportunities, challenges, and policy implications. Journal of Neurology, 271(5), 2258–2273. https://doi.org/10.1007/s00415-024-12220-8
How to Cite
Neto, P. J. G. (2025). How Can We Map Our Brains?. Science Insights, 46(4), 1791–1793. https://doi.org/10.15354/si.25.op263
Section
Opinion