##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Apr 30, 2025

Ga Eun Ko  

Abstract

Artificial intelligence (AI) is transforming human life at an unprecedented pace. From revolutionizing industries and improving health outcomes to shaping how we interact with the world and each other, AI technologies are deeply embedded in modern life. While these systems bring powerful benefits, they also pose serious problems that demand urgent attention. This essay explores key issues related to algorithmic bias, loss of privacy, job displacement, psychological impacts, social inequality, environmental concerns, and inadequate governance. It highlights that as AI continues to evolve, societies must establish ethical frameworks, regulatory policies, and inclusive design processes to ensure AI technologies serve the collective good. Failing to face these problems now may result in long-term consequences that compromise human dignity, autonomy, and societal cohesion.

##plugins.themes.bootstrap3.article.details##

Keywords

Artificial Intelligence, Underlying Mechanisms, Human Life, Deep Thinking, Social Autonomy

Supporting Agencies

No funding source declared.

References
Allen, A., Mataraso, S., Siefkas, A., Burdick, H., Braden, G., Dellinger, R. P., McCoy, A., Pellegrini, E., Hoffman, J., Green-Saxena, A., Barnes, G., Calvert, J., & Das, R. (2020). A racially unbiased, machine learning Approach to Prediction of Mortality: Algorithm Development study. JMIR Public Health and Surveillance, 6(4), e22400. https://doi.org/10.2196/22400

Arnold, D., Dobbie, W., & Hull, P. (2021). Measuring racial discrimination in algorithms. AEA Papers and Proceedings, 111, 49–54. https://doi.org/10.1257/pandp.20211080

Baskara, F. R. (2024). Conceptualizing Digital Literacy for the AI Era: A framework for Preparing students in an AI-Driven world. Data & Metadata, 4, 530. https://doi.org/10.56294/dm2025530

Capraro, V., Lentsch, A., Acemoglu, D., Akgun, S., Akhmedova, A., Bilancini, E., Bonnefon, J., Brañas-Garza, P., Butera, L., Douglas, K. M., Everett, J. a. C., Gigerenzer, G., Greenhow, C., Hashimoto, D. A., Holt-Lunstad, J., Jetten, J., Johnson, S., Kunz, W. H., Longoni, C., . . . Viale, R. (2024). The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus, 3(6). https://doi.org/10.1093/pnasnexus/pgae191

Chen, S. (2025). How much energy will AI really consume? The good, the bad and the unknown. Nature, 639(8053), 22–24. https://doi.org/10.1038/d41586-025-00616-z

Dhirani, L. L., Mukhtiar, N., Chowdhry, B. S., & Newe, T. (2023). Ethical Dilemmas and Privacy Issues in Emerging Technologies: A review. Sensors, 23(3), 1151. https://doi.org/10.3390/s23031151

Glauberman, G., Ito-Fujita, A., Katz, S., & Callahan, J. (2023). Artificial intelligence in nursing Education: Opportunities and challenges. Hawai’i Journal of Health & Social Welfare, 82(12), 302–305. https://pmc.ncbi.nlm.nih.gov/articles/PMC10713739/

Guidotti, R., Monreale, A., & Pedreschi, D. (2025, April 15). DBLP: ERCIM News, 2019. Dblp Computer Science Bibliography. https://dblp.uni-trier.de/db/journals/ercim/ercim2019.html#GuidottiMP19

Gupta, A., Puri, M., Keshan, M., & Tiwari, V. (2025). AI in Financial Decision-Making: Revolutionizing investment strategies and risk management. In Global Forum for Financial Consumers (GFFC) 2024. https://doi.org/10.2139/ssrn.5085764

Jarvis, T., Thornburg, D., Rebecca, A. M., & Teven, C. M. (2020). Artificial intelligence in plastic surgery: current applications, future directions, and ethical implications. Plastic & Reconstructive Surgery Global Open, 8(10), e3200. https://doi.org/10.1097/gox.0000000000003200

Kanchan, S., & Gaidhane, A. (2023). Social media role and its Impact on Public Health: A Narrative review. Cureus. https://doi.org/10.7759/cureus.33737

Kassem, H., Beevi, A., Basheer, S., Lutfi, G., Ismail, L. C., & Papandreou, D. (2025). Investigation and Assessment of AI’s Role in Nutrition—An Updated Narrative Review of the evidence. Nutrients, 17(1), 190. https://doi.org/10.3390/nu17010190

Liang, F., Das, V., Kostyuk, N., & Hussain, M. M. (2018). Constructing a Data‐Driven Society: China’s social credit system as a state surveillance infrastructure. Policy & Internet, 10(4), 415–453. https://doi.org/10.1002/poi3.183

Marriott, H. R., & Pitardi, V. (2023). One is the loneliest number. . . Two can be as bad as one. The influence of AI Friendship Apps on users’ well‐being and addiction. Psychology and Marketing, 41(1), 86–101. https://doi.org/10.1002/mar.21899

Morley, J., Elhalal, A., Garcia, F., Kinsey, L., Mökander, J., & Floridi, L. (2021). Ethics as a service: A pragmatic operationalisation of AI ethics. Minds and Machines, 31(2), 239–256. https://doi.org/10.1007/s11023-021-09563-w

Panch, T., Mattie, H., & Atun, R. (2019). Artificial intelligence and algorithmic bias: implications for health systems. Journal of Global Health, 9(2). https://doi.org/10.7189/jogh.09.0203 18

Pariser, E. (2012). The filter bubble: how the new personalized Web is changing what we read and how we think. Choice Reviews Online, 50(02), 50–0926. https://doi.org/10.5860/choice.50-0926

Patil, D. (2025). Artificial Intelligence In Financial Risk Assessment And Fraud Detection: Opportunities And Ethical Concerns. SSRN. https://doi.org/10.2139/ssrn.5057434

Percy, C., Dragicevic, S., Sarkar, S., & Garcez, A. D. (2022). Accountability in AI: From principles to industry-specific accreditation. AI Communications, 34(3), 181–196. https://doi.org/10.3233/aic-210080

Roshanaei, M., Olivares, H., & Lopez, R. R. (2023). Harnessing AI to Foster equity in Education: Opportunities, challenges, and emerging strategies. Journal of Intelligent Learning Systems and Applications, 15(04), 123–143. https://doi.org/10.4236/jilsa.2023.154009

Rubeis, G. (2023). Liquid Health. Medicine in the age of surveillance capitalism. Social Science & Medicine, 322, 115810. https://doi.org/10.1016/j.socscimed.2023.115810

Schmitt, M., & Koutroumpis, P. (2025). Cyber Shadows: Neutralizing Security Threats with AI and Targeted Policy Measures. IEEE Transactions on Artificial Intelligence, 1–9. https://doi.org/10.1109/tai.2025.3527398

Schuster, N., & Lazar, S. (2024). Attention, moral skill, and algorithmic recommendation. Philosophical Studies. https://doi.org/10.1007/s11098-023-02083-6

Shen, Y., & Zhang, X. (2024). The impact of artificial intelligence on employment: the role of virtual agglomeration. Humanities and Social Sciences Communications, 11(1). https://doi.org/10.1057/s41599-024-02647-9

Uddin, A. S. M. A. (2023). The era of AI: Upholding ethical leadership. Open Journal of Leadership, 12(04), 400–417. https://doi.org/10.4236/ojl.2023.1240 19

Van Noorden, R. (2020). The ethical questions that haunt facial-recognition research. Nature, 587(7834), 354–358. https://doi.org/10.1038/d41586-020-03187-3

Walsh, T. (2022). Will AI end privacy? How do we avoid an Orwellian future. AI & Society, 38(3), 1239–1240. https://doi.org/10.1007/s00146-022-01433-y

Wang, J., Zeng, Z., Li, Z., Liu, G., Zhang, S., Luo, C., Hu, S., Wan, S., & Zhao, L. (2025). The clinical application of artificial intelligence in cancer precision treatment. Journal of Translational Medicine, 23(1). https://doi.org/10.1186/s12967-025-06139-5

Zeng, J. (2020). Artificial intelligence and China’s authoritarian governance. International Affairs, 96(6), 1441–1459. https://doi.org/10.1093/ia/iiaa172
How to Cite
Ko, G. E. (2025). Artificial Intelligence and Your Life: The Problems We Must Face. Science Insights, 46(4), 1799–1803. https://doi.org/10.15354/si.25.pe211
Section
Perspective