Is Quantum Entanglement the Basis of Multiverse?
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Quantum entanglement remains one of the most perplexing and foundational phenomena in quantum mechanics, demonstrating instantaneous correlations between particles regardless of distance. This article hypothesizes that quantum entanglement may serve not merely as an artifact of quantum systems but as a fundamental structural component of a broader multiversal framework. By synthesizing principles from quantum mechanics, theoretical physics, and cosmology, the argument is developed that entanglement might indicate the coexistence and interaction of parallel realities. Such a perspective challenges the conventional interpretation of entanglement as a closed-system phenomenon and posits it instead as an interdimensional tether across multiple universes. Though currently speculative and beyond empirical verification, this hypothesis opens a philosophical and theoretical avenue for reevaluating the implications of entanglement and the nature of reality itself. By reframing entanglement as a bridge rather than a boundary, the article explores whether the quantum world subtly encodes the existence of the multiverse within its very correlations.
##plugins.themes.bootstrap3.article.details##
Quantum Entanglement, Multiverse, Universe Framework, Theoretical Physics, Cosmology
No funding source declared.
Brassard, G., & Raymond-Robichaud, P. (2019). Parallel Lives: A Local-Realistic Interpretation of “Nonlocal” Boxes. Entropy, 21(1), 87. DOI: https://doi.org/10.3390/e21010087
Di Biase, F. (2013). A Holoinformational Model of the Physical Observer. The Physics of Reality, 490–503. DOI: https://doi.org/10.1142/9789814504782_0050
Ellis, G. F. R. (2011). Does the multiverse really exist? Scientific American, 305(2), 38–43. DOI: https://doi.org/10.1038/scientificamerican0811-38
Fath, B. D. (2014). Sustainable systems promote wholeness-extending transformations: The contributions of systems thinking. Ecological Modelling, 293, 42–48. DOI: https://doi.org/10.1016/j.ecolmodel.2014.01.002
Grant, A. (2015). Gravity’s long-distance connection: Wormhole links between black holes could broker quantum-general relativity merger. Science News, 188(8), 28–31. DOI: https://doi.org/10.1002/scin.2015.188008016
Horodecki, R., Horodecki, P., Horodecki, M., & Horodecki, K. (2009). Quantum entanglement. Reviews of Modern Physics, 81(2), 865–942. DOI: https://doi.org/10.1103/revmodphys.81.865
Kanno, S. (2015). Cosmological implications of quantum entanglement in the multiverse. Physics Letters B, 751, 316–320. DOI: https://doi.org/10.1016/j.physletb.2015.10.050
Kanno, S., Shock, J. P., & Soda, J. (2015). Entanglement negativity in the multiverse. Journal of Cosmology and Astroparticle Physics, 2015(03), 015. DOI: https://doi.org/10.1088/1475-7516/2015/03/015
Krauss, A. (2024). Redefining the scientific method: as the use of sophisticated scientific methods that extend our mind. PNAS Nexus, 3(4). DOI: https://doi.org/10.1093/pnasnexus/pgae112
Kurizki, G., & Gordon, G. (2020). What is Quantum Entanglement? In Oxford University Press eBooks (pp. 109–119). DOI: https://doi.org/10.1093/oso/9780198787464.003.0007
Maes, S. (2020). Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe. HIJ. DOI: https://doi.org/10.31219/osf.io/z6ubm
Maldacena, J., & Susskind, L. (2013). Cool horizons for entangled black holes. Fortschritte Der Physik, 61(9), 781–811. DOI: https://doi.org/10.1002/prop.201300020
Marshall, P. (2023). The role of quantum mechanics in cognition-based evolution. Progress in Biophysics and Molecular Biology, 180–181, 131–139. DOI: https://doi.org/10.1016/j.pbiomolbio.2023.04.007
Prez, S. J. R. (2012). Inter-Universal entanglement. In InTech eBooks. DOI: https://doi.org/10.5772/52012
Robles-PéRez, S. J. (2013). Entanglement in a multiverse with no common space-time. AIP Conference Proceedings. DOI: https://doi.org/10.1063/1.4791719
Singh, T. P. (2017). Classical and quantum: a conflict of interest. In Fundamental theories of physics (pp. 411–425). DOI: https://doi.org/10.1007/978-3-319-51700-1_25
Sudbery, A., Home, D., Kar, G., & Majumda, A. S. (2011). Philosophical lessons of entanglement. AIP Conference Proceedings, 7–14. DOI: https://doi.org/10.1063/1.3635838
Van Raamsdonk, M. (2010). Building up spacetime with quantum entanglement. General Relativity and Gravitation, 42(10), 2323–2329. DOI: https://doi.org/10.1007/s10714-010-1034-0
Wootters, W. K. (1998). Quantum entanglement as a quantifiable resource. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 356(1743), 1717–1731. DOI: https://doi.org/10.1098/rsta.1998.0

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.