##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 26, 2025

Carmen Muro  

Abstract

Quantum entanglement remains one of the most perplexing and foundational phenomena in quantum mechanics, demonstrating instantaneous correlations between particles regardless of distance. This article hypothesizes that quantum entanglement may serve not merely as an artifact of quantum systems but as a fundamental structural component of a broader multiversal framework. By synthesizing principles from quantum mechanics, theoretical physics, and cosmology, the argument is developed that entanglement might indicate the coexistence and interaction of parallel realities. Such a perspective challenges the conventional interpretation of entanglement as a closed-system phenomenon and posits it instead as an interdimensional tether across multiple universes. Though currently speculative and beyond empirical verification, this hypothesis opens a philosophical and theoretical avenue for reevaluating the implications of entanglement and the nature of reality itself. By reframing entanglement as a bridge rather than a boundary, the article explores whether the quantum world subtly encodes the existence of the multiverse within its very correlations.

##plugins.themes.bootstrap3.article.details##

Keywords

Quantum Entanglement, Multiverse, Universe Framework, Theoretical Physics, Cosmology

Supporting Agencies

No funding source declared.

References
Akter, M. S., Faruk, M. J. H., Anjum, N., Masum, M., Shahriar, H., Sakib, N., Rahman, A., Wu, F., & Cuzzocrea, A. (2022). Software Supply Chain Vulnerabilities Detection in Source Code: Performance Comparison between Traditional and Quantum Machine Learning Algorithms. 2021 IEEE International Conference on Big Data (Big Data), 5639–5645. DOI: https://doi.org/10.1109/bigdata55660.2022.10020813

Brassard, G., & Raymond-Robichaud, P. (2019). Parallel Lives: A Local-Realistic Interpretation of “Nonlocal” Boxes. Entropy, 21(1), 87. DOI: https://doi.org/10.3390/e21010087

Di Biase, F. (2013). A Holoinformational Model of the Physical Observer. The Physics of Reality, 490–503. DOI: https://doi.org/10.1142/9789814504782_0050

Ellis, G. F. R. (2011). Does the multiverse really exist? Scientific American, 305(2), 38–43. DOI: https://doi.org/10.1038/scientificamerican0811-38

Fath, B. D. (2014). Sustainable systems promote wholeness-extending transformations: The contributions of systems thinking. Ecological Modelling, 293, 42–48. DOI: https://doi.org/10.1016/j.ecolmodel.2014.01.002

Grant, A. (2015). Gravity’s long-distance connection: Wormhole links between black holes could broker quantum-general relativity merger. Science News, 188(8), 28–31. DOI: https://doi.org/10.1002/scin.2015.188008016

Horodecki, R., Horodecki, P., Horodecki, M., & Horodecki, K. (2009). Quantum entanglement. Reviews of Modern Physics, 81(2), 865–942. DOI: https://doi.org/10.1103/revmodphys.81.865

Kanno, S. (2015). Cosmological implications of quantum entanglement in the multiverse. Physics Letters B, 751, 316–320. DOI: https://doi.org/10.1016/j.physletb.2015.10.050

Kanno, S., Shock, J. P., & Soda, J. (2015). Entanglement negativity in the multiverse. Journal of Cosmology and Astroparticle Physics, 2015(03), 015. DOI: https://doi.org/10.1088/1475-7516/2015/03/015

Krauss, A. (2024). Redefining the scientific method: as the use of sophisticated scientific methods that extend our mind. PNAS Nexus, 3(4). DOI: https://doi.org/10.1093/pnasnexus/pgae112

Kurizki, G., & Gordon, G. (2020). What is Quantum Entanglement? In Oxford University Press eBooks (pp. 109–119). DOI: https://doi.org/10.1093/oso/9780198787464.003.0007

Maes, S. (2020). Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe. HIJ. DOI: https://doi.org/10.31219/osf.io/z6ubm

Maldacena, J., & Susskind, L. (2013). Cool horizons for entangled black holes. Fortschritte Der Physik, 61(9), 781–811. DOI: https://doi.org/10.1002/prop.201300020

Marshall, P. (2023). The role of quantum mechanics in cognition-based evolution. Progress in Biophysics and Molecular Biology, 180–181, 131–139. DOI: https://doi.org/10.1016/j.pbiomolbio.2023.04.007

Prez, S. J. R. (2012). Inter-Universal entanglement. In InTech eBooks. DOI: https://doi.org/10.5772/52012
Robles-PéRez, S. J. (2013). Entanglement in a multiverse with no common space-time. AIP Conference Proceedings. DOI: https://doi.org/10.1063/1.4791719

Singh, T. P. (2017). Classical and quantum: a conflict of interest. In Fundamental theories of physics (pp. 411–425). DOI: https://doi.org/10.1007/978-3-319-51700-1_25

Sudbery, A., Home, D., Kar, G., & Majumda, A. S. (2011). Philosophical lessons of entanglement. AIP Conference Proceedings, 7–14. DOI: https://doi.org/10.1063/1.3635838

Van Raamsdonk, M. (2010). Building up spacetime with quantum entanglement. General Relativity and Gravitation, 42(10), 2323–2329. DOI: https://doi.org/10.1007/s10714-010-1034-0

Wootters, W. K. (1998). Quantum entanglement as a quantifiable resource. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 356(1743), 1717–1731. DOI: https://doi.org/10.1098/rsta.1998.0
How to Cite
Muro, C. (2025). Is Quantum Entanglement the Basis of Multiverse?. Science Insights, 46(6), 1847–1850. https://doi.org/10.15354/si.25.op306
Section
Opinion