##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 26, 2025

Jason K. Leu  

Abstract

Geomagnetic drift, the gradual and often sporadic movement of Earth’s magnetic poles, has long been considered a geophysical curiosity. However, emerging interdisciplinary evidence suggests that fluctuations in Earth’s magnetic field may have profoundly influenced human evolution, behavior, health, and societal development. From genetic mutation and embryogenesis to neuropsychological regulation, climate variation, and technological disruption, geomagnetic changes appear to exert a hidden but persistent force across biological and environmental systems. By examining data from paleomagnetism, genetics, anthropology, climatology, and neuroscience, this article constructs a comprehensive narrative of geomagnetic drift as a foundational determinant of human existence. It evaluates historical geomagnetic excursions like the Laschamp event, the magnetoreceptive capacities of humans and other species, and the far-reaching effects on circadian rhythm and mental health. In addition, it explores implications for future technological vulnerabilities and public health frameworks. The evidence invites a paradigm shift: humanity’s destiny may be intimately tied to the silent wanderings of Earth’s magnetic poles.

##plugins.themes.bootstrap3.article.details##

Keywords

Geomagnetic Drift, Magnetic Field, Earth, Humanity Destiny, Magnetic Poles

Supporting Agencies

No funding source declared.

References
Asale, A., Kussa, D., Girma, M., Mbogo, C., & Mutero, C. M. (2019). Community based integrated vector management for malaria control: lessons from three years’ experience (2016–2018) in Botor-Tolay district, southwestern Ethiopia. BMC Public Health, 19(1). DOI: https://doi.org/10.1186/s12889-019-7606-3

Bifani, A. M., Ong, E. Z., & De Alwis, R. (2020). Vaccination and therapeutics: Responding to the changing epidemiology of yellow fever. Current Treatment Options in Infectious Diseases/Current Treatment Options in Infectious Disease, 12(3), 349–360. DOI: https://doi.org/10.1007/s40506-020-00232-7

Braack, L., Wulandhari, S. A., Chanda, E., Fouque, F., Merle, C. S., Nwangwu, U., Velayudhan, R., Venter, M., Yahouedo, A. G., Lines, J., Aung, P. P., Chan, K., Abeku, T. A., Tibenderana, J., & Clarke, S. E. (2023). Developing African arbovirus networks and capacity strengthening in arbovirus surveillance and response: findings from a virtual workshop. Parasites & Vectors, 16(1). DOI: https://doi.org/10.1186/s13071-023-05748-7

Branda, F., Scarpa, F., Petrosillo, N., & Ciccozzi, M. (2024). A one health platform for future epidemic preparedness. Infectious Disease Reports, 16(2), 281–288. DOI: https://doi.org/10.3390/idr16020023

Caplan, A., & Mamo, N. (2024). The challenging concept of eradication: A core concept guiding and frustrating public health. Can J Public Health. DOI: https://doi.org/10.17269/s41997-024-00947-w

Carvalho, F. D., & Moreira, L. A. (2017). Why is Aedes aegypti Linnaeus so Successful as a Species? Neotropical Entomology, 46(3), 243–255. DOI: https://doi.org/10.1007/s13744-017-0520-4

Chotun, N., Eaton, J., Anagbogu, I. A., Tesfahunei, H. A., Shawa, S., Karutu, C., Bolarinwa, A., & Mohammed, A. (2024). Sustaining success through strategies for post-elimination management of neglected tropical diseases in African Union Member States. Frontiers in Tropical Diseases, 5. DOI: https://doi.org/10.3389/fitd.2024.1421522

De Gaetano, S., Ponzo, E., Midiri, A., Mancuso, G., Filippone, D., Infortuna, G., Zummo, S., & Biondo, C. (2025). Global Trends and Action Items for the Prevention and Control of Emerging and Re-Emerging Infectious Diseases. Hygiene, 5(2), 18. DOI: https://doi.org/10.3390/hygiene5020018

De Souza, W. M., Fumagalli, M. J., De Lima, S. T. S., Parise, P. L., Carvalho, D. C. M., Hernandez, C., De Jesus, R., Delafiori, J., Candido, D. S., Carregari, V. C., Muraro, S. P., Souza, G. F., Mello, L. M. S., Claro, I. M., Díaz, Y., Kato, R. B., Trentin, L. N., Costa, C. H.
S., Maximo, A. C. B. M., . . . Weaver, S. C. (2024). Pathophysiology of chikungunya virus infection associated with fatal outcomes. Cell Host & Microbe, 32(4), 606-622.e8. DOI: https://doi.org/10.1016/j.chom.2024.02.011

Dong, X., & Soong, L. (2021). Emerging and Re-emerging Zoonoses are Major and Global Challenges for Public Health. Zoonoses, 1(1). DOI: https://doi.org/10.15212/zoonoses-2021-0001

Ebi, K. L., & Hess, J. J. (2020). Health risks due to climate change: Inequity in causes and consequences. Health Affairs, 39(12), 2056–2062. DOI: https://doi.org/10.1377/hlthaff.2020.01125

Fang, J. (2010). Ecology: A world without mosquitoes. Nature, 466(7305), 432–434. DOI: https://doi.org/10.1038/466432a
Fatima, M., An, T., Park, P., & Hong, K. (2025). Advancements and Challenges in Addressing Zoonotic Viral Infections with Epidemic and Pandemic Threats. Viruses, 17(3), 352. DOI: https://doi.org/10.3390/v17030352

González, E., Anderson, M. a. E., Ang, J. X. D., Nevard, K., Shackleford, L., Larrosa-Godall, M., Leftwich, P. T., & Alphey, L. (2025). Optimization of SgRNA expression with RNA pol III regulatory elements in Anopheles stephensi. Scientific Reports, 15(1). DOI: https://doi.org/10.1038/s41598-025-98557-0

Guruprasad, N. M., Jalali, S. K., & Puttaraju, H. P. (2013). Wolbachia-a foe for mosquitoes. Asian Pacific Journal of Tropical Disease, 4(1), 78–81. DOI: https://doi.org/10.1016/s2222-1808(14)60319-4

Hancock, P. A., Ochomo, E., & Messenger, L. A. (2024). Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends in Parasitology, 40(7), 604–618. DOI: https://doi.org/10.1016/j.pt.2024.04.016

Krishnappa, L., Gadicherla, S., Chalageri, V. H., & Jacob, A. M. (2022). Impact of School-Based Health Education on Dengue Prevention and Control in an Urban Area during an Epidemic. Medical Journal of Dr D Y Patil Vidyapeeth, 16(Suppl 1), S10–S14. DOI: https://doi.org/10.4103/mjdrdypu.mjdrdypu_875_21

Kumar, G., Baharia, R., Singh, K., Gupta, S. K., Joy, S., Sharma, A., & Rahi, M. (2024). Addressing challenges in vector control: a review of current strategies and the imperative for novel tools in India’s combat against vector-borne diseases. BMJ Public Health, 2(1), e000342. DOI: https://doi.org/10.1136/bmjph-2023-000342

Leftwich, P. T., Edgington, M. P., Harvey-Samuel, T., Paladino, L. Z. C., Norman, V. C., & Alphey, L. (2018). Recent advances in threshold-dependent gene drives for mosquitoes. Biochemical Society Transactions, 46(5), 1203–1212. DOI: https://doi.org/10.1042/bst20180076

Lobo, N. F., Achee, N. L., Greico, J., & Collins, F. H. (2017). Modern Vector Control. Cold Spring Harbor Perspectives in Medicine, 8(1), a025643. DOI: https://doi.org/10.1101/cshperspect.a025643

Macnish, K., & Van Der Ham, J. (2020). Ethics in cybersecurity research and practice. Technology in Society, 63, 101382. DOI: https://doi.org/10.1016/j.techsoc.2020.101382

Mäkelin, M. (2024). Between the lab and the Wild: Establishing the Potential of Gene Drive Mosquitoes for Malaria Control. Science as Culture, 33(4), 491–510. DOI: https://doi.org/10.1080/09505431.2024.2325982

Moi, M. L., Takasaki, T., & Kurane, I. (2016). Human antibody response to dengue virus: implications for dengue vaccine design. Tropical Medicine and Health, 44(1). DOI: https://doi.org/10.1186/s41182-016-0004-y

Montgomery, M. J., Harwood, J. F., Yougang, A. P., Wilson-Bahun, T. A., Tedjou, A. N., Keumeni, C. R., Wondji, C. S., Kamgang, B., & Kilpatrick, A. M. (2025). The effects of urbanization, temperature, and rainfall on Aedes aegypti and Aedes albopictus mosquito abundance across a broad latitudinal gradient in Central Africa. Parasites & Vectors, 18(1). DOI: https://doi.org/10.1186/s13071-025-06764-5

Moreno, R. D., Valera, L., Borgoño, C., Castilla, J. C., & Riveros, J. L. (2024). Gene drives, mosquitoes, and ecosystems: an interdisciplinary approach to emerging ethical concerns. Frontiers in Environmental Science, 11. DOI: https://doi.org/10.3389/fenvs.2023.1254219

Nakase, T., Giovanetti, M., Obolski, U., & Lourenço, J. (2024). Population at risk of dengue virus transmission has increased due to coupled climate factors and population growth. Communications Earth & Environment, 5(1). DOI: https://doi.org/10.1038/s43247-024-01639-6

Parvez, M. K., & Parveen, S. (2017). Evolution and emergence of pathogenic viruses: past, present, and future. Intervirology, 60(1–2), 1–7. DOI: https://doi.org/10.1159/000478729

Scholz, S., Ngoli, B., & Flessa, S. (2015). Rapid assessment of infrastructure of primary health care facilities – a relevant instrument for health care systems management. BMC Health Services Research, 15(1). DOI: https://doi.org/10.1186/s12913-015-0838-8

Tajudeen, Y. A., Oladipo, H. J., Oladunjoye, I. O., Oladipo, M. K., Shittu, H. D., Abdulmumeen, I., Afolabi, A. O., & El-Sherbini, M. S. (2023). Transforming malaria prevention and control: the prospects and challenges of gene drive technology for mosquito management. Annals of Medicine, 55(2). DOI: https://doi.org/10.1080/07853890.2024.2302504

Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Tropical Diseases, 14(1), e0007831. DOI: https://doi.org/10.1371/journal.pntd.0007831

Yu, X., & Cheng, G. (2022). Adaptive evolution as a driving force of the emergence and Re-Emergence of Mosquito-Borne viral diseases. Viruses, 14(2), 435. DOI: https://doi.org/10.3390/v14020435

Zeng, D., Cao, Z., & Neill, D. B. (2020). Artificial intelligence–enabled public health surveillance—from local detection to global epidemic monitoring and control. In Elsevier eBooks (pp. 437–453). DOI: https://doi.org/10.1016/b978-0-12-821259-2.00022-3
How to Cite
Leu, J. K. (2025). Geomagnetic Drift: The Determining Factor of Human Existence. Science Insights, 46(6), 1863–1869. https://doi.org/10.15354/si.25.re1199
Section
Review