##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 26, 2025

Satohiro Hokari  

Abstract

Global warming has emerged as one of the most pressing challenges of the 21st century, with carbon dioxide (CO₂) often identified as the primary driver due to its heat-trapping capabilities. However, the dominance of carbon-centric narratives has overshadowed other potentially significant contributors such as methane, nitrous oxide, water vapor, aerosols, land-use change, and systemic feedback loops. This hypothesis article explores whether carbon is truly the main culprit behind global warming or if it is a proxy for a more complex web of factors. Through a multidisciplinary lens, it assesses scientific evidence, policy influence, climate modeling, and emerging research to question carbon's centrality. The article does not deny carbon's role but posits that focusing too narrowly on CO₂ may hinder comprehensive climate action. By re-evaluating the relative contributions of different forcings and amplifiers of warming, this analysis seeks to refine our understanding of climate dynamics and inform more holistic mitigation strategies that reflect the interconnected nature of Earth’s systems.

##plugins.themes.bootstrap3.article.details##

Keywords

Carbon Dioxide, Global Warming, Earth, Greenhouse, Pollution

Supporting Agencies

No funding source declared.

References
Babin, A., Vaneeckhaute, C., & Iliuta, M. C. (2021). Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review. Biomass and Bioenergy, 146, 105968. DOI: https://doi.org/10.1016/j.biombioe.2021.105968

Bauer, S. E., Tsigaridis, K., Faluvegi, G., Nazarenko, L., Miller, R. L., Kelley, M., & Schmidt, G. (2022). The turning point of the aerosol era. Journal of Advances in Modeling Earth Systems, 14(12). DOI: https://doi.org/10.1029/2022ms003070

Bonan, G. B., & Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359(6375). DOI: https://doi.org/10.1126/science.aam8328

Chlek, P., & Coakley, J. A. (1974). Aerosols and climate. Science, 183(4120), 75–77. DOI: https://doi.org/10.1126/science.183.4120.75

Chung, E., Soden, B., Sohn, B. J., & Shi, L. (2014). Upper-tropospheric moistening in response to anthropogenic warming. Proceedings of the National Academy of Sciences, 111(32), 11636–11641. DOI: https://doi.org/10.1073/pnas.1409659111

Cohen-Shields, N., Sun, T., Hamburg, S. P., & Ocko, I. B. (2023). Distortion of sectoral roles in climate change threatens climate goals. Frontiers in Climate, 5. DOI: https://doi.org/10.3389/fclim.2023.1163557

Cronin, J., Anandarajah, G., & Dessens, O. (2018). Climate change impacts on the energy system: a review of trends and gaps. Climatic Change, 151(2), 79–93. DOI: https://doi.org/10.1007/s10584-018-2265-4

DeVries, T., Holzer, M., & Primeau, F. (2017). Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542(7640), 215–218. DOI: https://doi.org/10.1038/nature21068

Fagodiya, R. K., Pathak, H., Kumar, A., Bhatia, A., & Jain, N. (2017). Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. Scientific Reports, 7(1). DOI: https://doi.org/10.1038/srep44928

Fahey, D., Doherty, S. J., Hibbard, K. A., Romanou, A., & Taylor, P. C. (2017). Physical drivers of climate change. U.S. Department of Commerce. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1572&context=usdeptcommercepub

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Quéré, C. L., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., . . . Zheng, B. (2022). Global Carbon Budget 2022. Earth System Science Data, 14(11), 4811–4900. DOI: https://doi.org/10.5194/essd-14-4811-2022

Held, I. M., & Soden, B. J. (2000). Water vapor feedback and global warming. Annual Review of Energy and the Environment, 25(1), 441–475. DOI: https://doi.org/10.1146/annurev.energy.25.1.441

Krueger, L. A., Koester, L. R., Jones, D. F., & Spangler, D. A. (2023). Carbon dioxide equivalent emissions from corn silage fermentation. Frontiers in Microbiology, 13. DOI: https://doi.org/10.3389/fmicb.2022.1092315

Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A., & Adormaa, B. (2018). Greenhouse Effect: Greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 17(6), 1–9. DOI: https://doi.org/10.9734/jsrr/2017/39630

Lynch-Stieglitz, J. (2016). The Atlantic Meridional overturning circulation and abrupt climate change. Annual Review of Marine Science, 9(1), 83–104. DOI: https://doi.org/10.1146/annurev-marine-010816-060415

Manabe, S. (2019). Role of greenhouse gas in climate change. Tellus a Dynamic Meteorology and Oceanography, 71(1), 1620078. DOI: https://doi.org/10.1080/16000870.2019.1620078

Papakonstantinou, G. I., Voulgarakis, N., Terzidou, G., Fotos, L., Giamouri, E., & Papatsiros, V. G. (2024). Precision Livestock farming Technology: Applications and challenges of animal welfare and climate change. Agriculture, 14(4), 620. DOI: https://doi.org/10.3390/agriculture14040620

Paterson, M., & P‐Laberge, X. (2018). Political economies of climate change. Wiley Interdisciplinary Reviews Climate Change, 9(2). DOI: https://doi.org/10.1002/wcc.506

Pitman, A., & De Noblet-Ducoudré, N. (2011). Human effects on climate through Land-Use-Induced Land-Cover change. In Elsevier eBooks (pp. 77–95). DOI: https://doi.org/10.1016/b978-0-12-386917-3.00004-x

Ricaud, P., Carminati, F., Courcoux, Y., Pellegrini, A., Attié, J., Amraoui, L. E., Abida, R., Genthon, C., August, T., & Warner, J. (2013). Statistical analyses and correlation between tropospheric temperature and humidity at Dome C, Antarctica. Antarctic Science, 26(3), 290–308. DOI: https://doi.org/10.1017/s0954102013000564

Stammer, D., Bracco, A., AchutaRao, K., Beal, L., Bindoff, N. L., Braconnot, P., Cai, W., Chen, D., Collins, M., Danabasoglu, G., Dewitte, B., Farneti, R., Fox-Kemper, B., Fyfe, J., Griffies, S. M., Jayne, S. R., Lazar, A., Lengaigne, M., Lin, X., . . . Vialard, J. (2019).
Ocean climate observing requirements in support of climate research and climate information. Frontiers in Marine Science, 6. DOI: https://doi.org/10.3389/fmars.2019.00444

Stavins, R. N. (2008). Addressing climate change with a comprehensive US cap-and-trade system. Oxford Review of Economic Policy, 24(2), 298–321. DOI: https://doi.org/10.1093/oxrep/grn017

Taylor, D. (1997). Seeing the forests for the more than the trees. Environmental Health Perspectives, 105(11), 1186–1191. DOI: https://doi.org/10.1289/ehp.971051186

Vasiliades, L., & Mastraftsis, I. (2023). A Monthly Water Balance Model for Assessing Streamflow Uncertainty in Hydrologic Studies. Environmental Sciences Proceedings, 39. DOI: https://doi.org/10.3390/ecws-7-14192

Zhang, B. (2020). The effect of aerosols to climate change and society. Journal of Geoscience and Environment Protection, 08(08), 55–78. DOI: https://doi.org/10.4236/gep.2020.88006
How to Cite
Hokari, S. (2025). Is Carbon Dioxide the Real Reason of Global Warming?. Science Insights, 46(6), 1851–1855. https://doi.org/10.15354/si.25.pe231
Section
Perspective