Deep Understanding of the Role of Sleep in Brain Cleansing
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Sleep is a fundamental physiological process crucial for maintaining cognitive function, emotional regulation, and overall brain health. Recent research has highlighted sleep’s pivotal role in facilitating the brain’s intrinsic cleansing mechanisms, primarily via the glymphatic system, which actively removes metabolic waste products, including neurotoxic proteins such as beta-amyloid and tau. Disruptions in sleep architecture or duration can impair these clearance processes, potentially contributing to neurodegenerative disorders such as Alzheimer’s disease. This review synthesizes current evidence on the mechanisms underlying sleep-dependent brain cleansing, examining the interplay between neuronal activity, cerebrospinal fluid dynamics, and circadian regulation. It also explores the implications of sleep deprivation, aging, and pathological conditions on brain homeostasis. By integrating molecular, neurophysiological, and clinical findings, this article underscores the importance of sleep in maintaining cerebral health and highlights potential therapeutic strategies to optimize sleep for neuroprotection.
##plugins.themes.bootstrap3.article.details##
Sleep, Quality vs Quantity, Brain Cleansing, Glymphatic System, Neuroprotection
No funding source declared.
Albrecht, U., & Ripperger, J. A. (2018). Circadian clocks and sleep: Impact of rhythmic metabolism and waste clearance on the brain. Trends in Neurosciences, 41(10), 677–688. DOI: https://doi.org/10.1016/j.tins.2018.07.007
Bah, T. M., Siler, D. A., Ibrahim, A. H., Cetas, J. S., & Alkayed, N. J. (2023). Fluid dynamics in aging-related dementias. Neurobiology of Disease, 177, 105986. DOI: https://doi.org/10.1016/j.nbd.2022.105986
Bloom, H. G., Ahmed, I., Alessi, C. A., Ancoli‐Israel, S., Buysse, D. J., Kryger, M. H., Phillips, B. A., Thorpy, M. J., Vitiello, M. V., & Zee, P. C. (2009). Evidence‐Based recommendations for the assessment and management of sleep disorders in older persons. Journal of the American Geriatrics Society, 57(5), 761–789. DOI: https://doi.org/10.1111/j.1532-5415.2009.02220.x
Bojarskaite, L., Vallet, A., Bjørnstad, D. M., Binder, K. M. G., Cunen, C., Heuser, K., Kuchta, M., Mardal, K., & Enger, R. (2023). Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport. Nature Communications, 14(1). DOI: https://doi.org/10.1038/s41467-023-36643-5
Burfeind, K. G., Murchison, C. F., Westaway, S. K., Simon, M. J., Erten‐Lyons, D., Kaye, J. A., Quinn, J. F., & Iliff, J. J. (2017). The effects of noncoding aquaporin‐4 single‐nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease. Alzheimer S & Dementia Translational Research & Clinical Interventions, 3(3), 348–359. DOI: https://doi.org/10.1016/j.trci.2017.05.001
Chen, S., Wang, H., Zhang, L., Xi, Y., Lu, Y., Yu, K., Zhu, Y., Regina, I., Bi, Y., & Tong, F. (2025). Glymphatic system: a self-purification circulation in brain. Frontiers in Cellular Neuroscience, 19. DOI: https://doi.org/10.3389/fncel.2025.1528995
Chong, P. L., Garic, D., Shen, M. D., Lundgaard, I., & Schwichtenberg, A. J. (2021). Sleep, cerebrospinal fluid, and the glymphatic system: A systematic review. Sleep Medicine Reviews, 61, 101572. DOI: https://doi.org/10.1016/j.smrv.2021.101572
Chong, S., Wang, S., Gao, T., Yuan, K., Han, Y., Shi, L., Li, P., Lin, X., & Lu, L. (2025). Glymphatic function decline as a mediator of core memory-related brain structures atrophy in aging. Journal of Translational Internal Medicine, 13(1), 65–77. DOI: https://doi.org/10.1515/jtim-2025-0007
Christensen, J., Yamakawa, G. R., Shultz, S. R., & Mychasiuk, R. (2020). Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties. Progress in Neurobiology, 198, 101917. DOI: https://doi.org/10.1016/j.pneurobio.2020.101917
Corbali, O., & Levey, A. I. (2025). Glymphatic system in neurological disorders and implications for brain health. Frontiers in Neurology, 16. DOI: https://doi.org/10.3389/fneur.2025.1543725
Coulson, R. L., Mourrain, P., & Wang, G. X. (2022). Sleep deficiency as a driver of cellular stress and damage in neurological disorders. Sleep Medicine Reviews, 63, 101616. DOI: https://doi.org/10.1016/j.smrv.2022.101616
Cuddapah, V. A., Zhang, S. L., & Sehgal, A. (2019). Regulation of the Blood–Brain barrier by circadian rhythms and sleep. Trends in Neurosciences, 42(7), 500–510. DOI: https://doi.org/10.1016/j.tins.2019.05.001
De Sousa Lages, A., Lopes, V., Horta, J., Espregueira-Mendes, J., Andrade, R., & Rebelo-Marques, A. (2022). Therapeutics that can potentially replicate or augment the Anti-Aging effects of physical exercise. International Journal of Molecular Sciences, 23(17), 9957. DOI: https://doi.org/10.3390/ijms23179957
Delaney, L. J., Currie, M. J., Huang, H. C., Lopez, V., & Van Haren, F. (2018). “They can rest at home”: an observational study of patients’ quality of sleep in an Australian hospital. BMC Health Services Research, 18(1). DOI: https://doi.org/10.1186/s12913-018-3201-z
Ding, Z., Fan, X., Zhang, Y., Yao, M., Wang, G., Dong, Y., Liu, J., & Song, W. (2023). The glymphatic system: a new perspective on brain diseases. Frontiers in Aging Neuroscience, 15. DOI: https://doi.org/10.3389/fnagi.2023.1179988
Dong, R., Liu, W., Han, Y., Wang, Z., Jiang, L., Wang, L., & Gu, X. (2024). Influencing factors of glymphatic system during perioperative period. Frontiers in Neuroscience, 18. DOI: https://doi.org/10.3389/fnins.2024.1428085
Espiritu, J. R. D. (2007). Aging-Related sleep changes. Clinics in Geriatric Medicine, 24(1), 1–14. DOI: https://doi.org/10.1016/j.cger.2007.08.007
Fultz, N. E., Bonmassar, G., Setsompop, K., Stickgold, R. A., Rosen, B. R., Polimeni, J. R., & Lewis, L. D. (2019). Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science, 366(6465), 628–631. DOI: https://doi.org/10.1126/science.aax5440
Gallina, P., Porfirio, B., Caini, S., Lolli, F., & Scollato, A. (2024). Aqueductal CSF stroke volume is associated with the burden of perivascular space enlargement in chronic adult hydrocephalus. Scientific Reports, 14(1). DOI: https://doi.org/10.1038/s41598-024-63926-8
Gao, Y., Liu, K., & Zhu, J. (2023). Glymphatic system: an emerging therapeutic approach for neurological disorders. Frontiers in Molecular Neuroscience, 16. DOI: https://doi.org/10.3389/fnmol.2023.1138769
Gędek, A., Koziorowski, D., & Szlufik, S. (2023). Assessment of factors influencing glymphatic activity and implications for clinical medicine. Frontiers in Neurology, 14. DOI: https://doi.org/10.3389/fneur.2023.1232304
Gnarra, O., Calvello, C., Schirinzi, T., Beozzo, F., De Masi, C., Spanetta, M., Fernandes, M., Grillo, P., Cerroni, R., Pierantozzi, M., Bassetti, C. L. A., Mercuri, N. B., Stefani, A., & Liguori, C. (2023). Exploring the association linking head position and sleep architecture to motor impairment in Parkinson’s Disease: an exploratory study. Journal of Personalized Medicine, 13(11), 1591. DOI: https://doi.org/10.3390/jpm13111591
Green, K. N. (2009). Calcium in the initiation, progression and as an effector of Alzheimer’s disease pathology. Journal of Cellular and Molecular Medicine, 13(9a), 2787–2799. DOI: https://doi.org/10.1111/j.1582-4934.2009.00861.x
Groh, J., Feng, R., Yuan, X., Liu, L., Klein, D., Hutahaean, G., Butz, E., Wang, Z., Steinbrecher, L., Neher, J., Martini, R., & Simons, M. (2025). Microglia activation orchestrates CXCL10-mediated CD8+ T cell recruitment to promote aging-related white matter degeneration. Nature Neuroscience. DOI: https://doi.org/10.1038/s41593-025-01955-w
Guadiana, N., & Okashima, T. (2020). The Effects of Sleep Deprivation on College Students [Dominican University of California]. DOI: https://doi.org/10.33015/dominican.edu/2021.nurs.st.09
Hablitz, L. M., Plá, V., Giannetto, M., Vinitsky, H. S., Stæger, F. F., Metcalfe, T., Nguyen, R., Benrais, A., & Nedergaard, M. (2020). Circadian control of brain glymphatic and lymphatic fluid flow. Nature Communications, 11(1). DOI: https://doi.org/10.1038/s41467-020-18115-2
Han, G., Zhou, Y., Zhang, K., Jiao, B., Hu, J., Zhang, Y., Wang, Z., Lou, M., & Bai, R. (2023). Age- and time-of-day dependence of glymphatic function in the human brain measured via two diffusion MRI methods. Frontiers in Aging Neuroscience, 15. DOI: https://doi.org/10.3389/fnagi.2023.1173221
Hasíková, L., Závada, J., Serranová, T., Kozlík, P., Kalíková, K., Kotačková, L., Trnka, J., Zogala, D., Šonka, K., Růžička, E., & Dušek, P. (2023). Serum but not cerebrospinal fluid levels of allantoin are increased in de novo Parkinson’s disease. Npj Parkinson S Disease, 9(1). DOI: https://doi.org/10.1038/s41531-023-00505-0
Hauglund, N. L., Andersen, M., Tokarska, K., Radovanovic, T., Kjaerby, C., Sørensen, F. L., Bojarowska, Z., Untiet, V., Ballestero, S. B., Kolmos, M. G., Weikop, P., Hirase, H., & Nedergaard, M. (2025). Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep. Cell, 188(3), 606-622.e17. DOI: https://doi.org/10.1016/j.cell.2024.11.027
Hiraga, K., Hattori, M., Satake, Y., Tamakoshi, D., Fukushima, T., Uematsu, T., Tsuboi, T., Sato, M., Yokoi, K., Suzuki, K., Arahata, Y., Washimi, Y., Hori, A., Yamamoto, M., Shimizu, H., Wakai, M., Tatebe, H., Tokuda, T., Nakamura, A., . . . Katsuno, M. (2024). Plasma biomarkers of neurodegeneration in patients and high risk subjects with Lewy body disease. Npj Parkinson S Disease, 10(1). DOI: https://doi.org/10.1038/s41531-024-00745-8
Hladky, S. B., & Barrand, M. A. (2014). Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids and Barriers of the CNS, 11(1), 26. DOI: https://doi.org/10.1186/2045-8118-11-26
Iliff, J. J., Lee, H., Yu, M., Feng, T., Logan, J., Nedergaard, M., & Benveniste, H. (2013). Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. Journal of Clinical Investigation, 123(3), 1299–1309. DOI: https://doi.org/10.1172/jci67677
Imayama, I., Balserak, B. I., Gupta, A., Munoz, T., Srimoragot, M., Keenan, B. T., Kuna, S. T., & Prasad, B. (2021). Racial Differences in Functional and Sleep Outcomes with Positive Airway Pressure Treatment. Diagnostics, 11(12), 2176. DOI: https://doi.org/10.3390/diagnostics11122176
Jiang-Xie, L., Drieu, A., & Kipnis, J. (2024). Waste clearance shapes aging brain health. Neuron. DOI: https://doi.org/10.1016/j.neuron.2024.09.017
Kelley, D. H. (2021). Brain cerebrospinal fluid flow. Physical Review Fluids, 6(7). DOI: https://doi.org/10.1103/physrevfluids.6.070501
Kip, E., & Parr-Brownlie, L. C. (2023). Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neurodegenerative and psychiatric disorders. Frontiers in Neuroscience, 17. DOI: https://doi.org/10.3389/fnins.2023.1092537
Lázaro, D. F., Dias, M. C., Carija, A., Navarro, S., Madaleno, C. S., Tenreiro, S., Ventura, S., & Outeiro, T. F. (2016). The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathologica Communications, 4(1). DOI: https://doi.org/10.1186/s40478-016-0402-8
Lee, D. S., Suh, M., Sarker, A., & Choi, Y. (2020). Brain Glymphatic/Lymphatic imaging by MRI and PET. Nuclear Medicine and Molecular Imaging, 54(5), 207–223. DOI: https://doi.org/10.1007/s13139-020-00665-4
Lee, H., Xie, L., Yu, M., Kang, H., Feng, T., Deane, R., Logan, J., Nedergaard, M., & Benveniste, H. (2015). The effect of body posture on brain glymphatic transport. Journal of Neuroscience, 35(31), 11034–11044. DOI: https://doi.org/10.1523/jneurosci.1625-15.2015
Lee, W., Jung, K., Park, H., Sohn, C., Lee, S., Park, K., Chu, K., Jung, K., Kim, M., Lee, S. K., & Roh, J. (2019). Periodicity of cerebral flow velocity during sleep and its association with white-matter hyperintensity volume. Scientific Reports, 9(1). DOI: https://doi.org/10.1038/s41598-019-52029-4
Li, L., Ding, G., Zhang, L., Davoodi-Bojd, E., Chopp, M., Li, Q., Zhang, Z. G., & Jiang, Q. (2022). Aging-Related Alterations of Glymphatic Transport in Rat: In vivo Magnetic Resonance Imaging and Kinetic Study. Frontiers in Aging Neuroscience, 14. DOI: https://doi.org/10.3389/fnagi.2022.841798
Li, M., Kitamura, A., Beverley, J., Koudelka, J., Duncombe, J., Lennen, R., Jansen, M. A., Marshall, I., Platt, B., Wiegand, U. K., Carare, R. O., Kalaria, R. N., Iliff, J. J., & Horsburgh, K. (2022). Impaired glymphatic function and pulsation alterations in a mouse model of vascular cognitive impairment. Frontiers in Aging Neuroscience, 13. DOI: https://doi.org/10.3389/fnagi.2021.788519
Liang, W., Sun, W., Li, C., Zhou, J., Long, C., Li, H., Xu, D., & Xu, H. (2025). Glymphatic system dysfunction and cerebrospinal fluid retention in gliomas: evidence from perivascular space diffusion and volumetric analysis. Cancer Imaging, 25(1). DOI: https://doi.org/10.1186/s40644-025-00868-y
Luyster, F. S., Strollo, P. J., Zee, P. C., & Walsh, J. K. (2012). Sleep: a health imperative. SLEEP, 35(6), 727–734. DOI: https://doi.org/10.5665/sleep.1846
McCall, W. V. (2004). Sleep in the elderly. The Primary Care Companion to the Journal of Clinical Psychiatry, 6(1), 9–20. DOI: https://doi.org/10.4088/pcc.v06n0104
Mellow, M. L., Dumuid, D., Thacker, J. S., Dorrian, J., & Smith, A. E. (2019). Building your best day for healthy brain aging—The neuroprotective effects of optimal time use. Maturitas, 125, 33–40. DOI: https://doi.org/10.1016/j.maturitas.2019.04.204
Naganawa, S., & Taoka, T. (2020). The Glymphatic System: A Review of the Challenges in Visualizing its Structure and Function with MR Imaging. Magnetic Resonance in Medical Sciences, 21(1), 182–194. DOI: https://doi.org/10.2463/mrms.rev.2020-0122
Natale, G., Limanaqi, F., Busceti, C. L., Mastroiacovo, F., Nicoletti, F., Puglisi-Allegra, S., & Fornai, F. (2021). Glymphatic system as a gateway to connect neurodegeneration from periphery to CNS. Frontiers in Neuroscience, 15. DOI: https://doi.org/10.3389/fnins.2021.639140
Neikrug, A. B., & Ancoli-Israel, S. (2009). Sleep Disorders in the Older Adult – A Mini-Review. Gerontology, 56(2), 181–189. DOI: https://doi.org/10.1159/000236900
Nikolenko, V. N., Oganesyan, M. V., Vovkogon, A. D., Nikitina, A. T., Sozonova, E. A., Kudryashova, V. A., Rizaeva, N. A., Cabezas, R., Avila-Rodriguez, M., Neganova, M. E., Mikhaleva, L. M., Bachurin, S. O., Somasundaram, S. G., Kirkland, C. E., Tarasov, V. V., & Aliev, G. (2019). Current understanding of central nervous system drainage systems: Implications in the context of Neurodegenerative Diseases. Current Neuropharmacology, 18(11), 1054–1063. DOI: https://doi.org/10.2174/1570159x17666191113103850
Nozaleda, G. L., Coenen, W., Haughton, V., & Sánchez, A. L. (2025). Arterial pulsations and transmantle pressure synergetically drive glymphatic flow. Scientific Reports, 15(1). DOI: https://doi.org/10.1038/s41598-025-97631-x
Oertel, W. H., Henrich, M. T., Janzen, A., & Geibl, F. F. (2019). The locus coeruleus: Another vulnerability target in Parkinson’s disease. Movement Disorders, 34(10), 1423–1429. DOI: https://doi.org/10.1002/mds.27785
Pace-Schott, E. F., & Spencer, R. M. (2011). Age-related changes in the cognitive function of sleep. Progress in Brain Research, 75–89. DOI: https://doi.org/10.1016/b978-0-444-53752-2.00012-6
Peng, S., Liu, J., Liang, C., Yang, L., & Wang, G. (2023). Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiology of Disease, 179, 106035. DOI: https://doi.org/10.1016/j.nbd.2023.106035
Plog, B. A., Smyth, L. C. D., & Kipnis, J. (2025). The night shift: norepinephrine drives glymphatics. Cell Research. DOI: https://doi.org/10.1038/s41422-025-01106-7
Rainey-Smith, S. R., Mazzucchelli, G. N., Villemagne, V. L., Brown, B. M., Porter, T., Weinborn, M., Bucks, R. S., Milicic, L., Sohrabi, H. R., Taddei, K., Ames, D., Maruff, P., Masters, C. L., Rowe, C. C., Salvado, O., Martins, R. N., & Laws, S. M. (2018). Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Translational Psychiatry, 8(1). DOI: https://doi.org/10.1038/s41398-018-0094-x
Raison, C. L., Capuron, L., & Miller, A. H. (2005). Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends in Immunology, 27(1), 24–31. DOI: https://doi.org/10.1016/j.it.2005.11.006
Ramos, A. R., Wheaton, A. G., & Johnson, D. A. (2023). Sleep deprivation, sleep disorders, and chronic disease. Preventing Chronic Disease, 20. DOI: https://doi.org/10.5888/pcd20.230197
Rashid, A. (2024). Nano Fullerenes with The Ability to Store Electrostatic Energy That can be Used as Nano Supercapacitors With Very High Capacity. DOI: https://doi.org/10.55277/researchhub.vq5dnd6h
Reddy, O. C., & Van Der Werf, Y. D. (2020). The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain Sciences, 10(11), 868. DOI: https://doi.org/10.3390/brainsci10110868
Ringstad, G., Vatnehol, S. a. S., & Eide, P. K. (2017). Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain, 140(10), 2691–2705. DOI: https://doi.org/10.1093/brain/awx191
Rodriguez, J. C., Dzierzewski, J. M., & Alessi, C. A. (2014). Sleep problems in the elderly. Medical Clinics of North America, 99(2), 431–439. DOI: https://doi.org/10.1016/j.mcna.2014.11.013
Roepke, S. K., & Ancoli-Israel, S. (2010). Sleep disorders in the elderly. The Indian Journal of Medical Research, 131, 302–310.
Romanò, F., Suresh, V., Galie, P. A., & Grotberg, J. B. (2020). Peristaltic flow in the glymphatic system. Scientific Reports, 10(1). DOI: https://doi.org/10.1038/s41598-020-77787-4
Rosado-Ramos, R., Poças, G. M., Marques, D., Foito, A., Sevillano, D. M., Lopes-Da-Silva, M., Gonçalves, L. G., Menezes, R., Ottens, M., Stewart, D., De Opakua, A. I., Zweckstetter, M., Seabra, M. C., Mendes, C. S., Outeiro, T. F., Domingos, P. M., & Santos, C. N. (2023). Genipin prevents alpha-synuclein aggregation and toxicity by affecting endocytosis, metabolism and lipid storage. Nature Communications, 14(1). DOI: https://doi.org/10.1038/s41467-023-37561-2
Roy, B., Nunez, A., Aysola, R. S., Kang, D. W., Vacas, S., & Kumar, R. (2022). Impaired glymphatic system actions in obstructive sleep apnea adults. Frontiers in Neuroscience, 16. DOI: https://doi.org/10.3389/fnins.2022.884234
Santiago, J. A., & Potashkin, J. A. (2023). Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases. Frontiers in Aging Neuroscience, 15. DOI: https://doi.org/10.3389/fnagi.2023.1185671
Santostasi, G., Malkani, R., Riedner, B., Bellesi, M., Tononi, G., Paller, K. A., & Zee, P. C. (2015). Phase-locked loop for precisely timed acoustic stimulation during sleep. Journal of Neuroscience Methods, 259, 101–114. DOI: https://doi.org/10.1016/j.jneumeth.2015.11.007
Sarode, R., & Nikam, P. P. (2023). The Impact of sleep disorders on cardiovascular health: Mechanisms and interventions. Cureus. DOI: https://doi.org/10.7759/cureus.49703
Scullin, M. K. (2017). Do older adults need sleep? A review of neuroimaging, sleep, and aging studies. Current Sleep Medicine Reports, 3(3), 204–214. DOI: https://doi.org/10.1007/s40675-017-0086-z
Sherpa, A. D., Aoki, C., & Hrabetova, S. (2017). Noradrenaline drives structural changes in astrocytes and brain extracellular space. In Elsevier eBooks (pp. 241–255). DOI: https://doi.org/10.1016/b978-0-12-805088-0.00012-8
Simka, M., Czaja, J., & Kowalczyk, D. (2019). Collapsibility of the internal jugular veins in the lateral decubitus body position: A potential protective role of the cerebral venous outflow against neurodegeneration. Medical Hypotheses, 133, 109397. DOI: https://doi.org/10.1016/j.mehy.2019.109397
Simon, M., Wang, M. X., Ismail, O., Braun, M., Schindler, A. G., Reemmer, J., Wang, Z., Haveliwala, M. A., O’Boyle, R. P., Han, W. Y., Roese, N., Grafe, M., Woltjer, R., Boison, D., & Iliff, J. J. (2022). Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice. Alzheimer S Research & Therapy, 14(1). DOI: https://doi.org/10.1186/s13195-022-00999-5
Smets, N. G., Strijkers, G. J., Vinje, V., & Bakker, E. N. T. P. (2023). Cerebrospinal fluid turnover as a driver of brain clearance. NMR in Biomedicine, 37(7). DOI: https://doi.org/10.1002/nbm.5029
Smyth, L. C. D., Plog, B. A., & Kipnis, J. (2025). Rest and rinse: sleeping rhythms drive brain detox. Trends in Immunology. DOI: https://doi.org/10.1016/j.it.2025.02.007
Sun, L. (2015). Neural Regeneration research [Dataset]. In Figshare. DOI: https://doi.org/10.6084/m9.figshare.2007621.v2
Sun, Y., Lv, Q., Liu, J., Wang, F., & Liu, C. (2025). New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases. Neurobiology of Disease, 205, 106791. DOI: https://doi.org/10.1016/j.nbd.2025.106791
Suzuki, K., Miyamoto, M., & Hirata, K. (2017). Sleep disorders in the elderly: Diagnosis and management. Journal of General and Family Medicine, 18(2), 61–71. DOI: https://doi.org/10.1002/jgf2.27
Tang, H., Zhang, X., Hu, S., Song, Y., Jin, W., Zou, J., Zhang, Y., Guo, J., An, P., Luo, J., Wang, P., Luo, Y., & Zhu, Y. (2025). Natural products acting as senolytics and senomorphics alleviate cardiovascular diseases by targeting senescent cells. Targets, 3(3), 23. DOI: https://doi.org/10.3390/targets3030023
Tatineny, P., Shafi, F., Gohar, A., & Bhat, A. (2020). Sleep in the elderly. Missouri Medicine, 117(5), 490–495. https://pmc.ncbi.nlm.nih.gov/articles/PMC7723148/
Tekieh, T., Robinson, P. A., & Postnova, S. (2022). Cortical waste clearance in normal and restricted sleep with potential runaway tau buildup in Alzheimer’s disease. Scientific Reports, 12(1). DOI: https://doi.org/10.1038/s41598-022-15109-6
Tysnes, O., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 124(8), 901–905. DOI: https://doi.org/10.1007/s00702-017-1686-y
Uji, M., Li, X., Saotome, A., Katsumata, R., Waggoner, R. A., Suzuki, C., Ueno, K., Aritake, S., & Tamaki, M. (2024). Human deep sleep facilitates faster cerebrospinal fluid dynamics linked to brain oscillations for sleep homeostasis and memory. bioRxiv (Cold Spring Harbor Laboratory). DOI: https://doi.org/10.1101/2024.08.30.610454
Van Veluw, S. J., Benveniste, H., Bakker, E. N. T. P., Carare, R. O., Greenberg, S. M., Iliff, J. J., Lorthois, S., Van Nostrand, W. E., Petzold, G. C., Shih, A. Y., & Van Osch, M. J. P. (2024). Is CAA a perivascular brain clearance disease? A discussion of the evidence to date and outlook for future studies. Cellular and Molecular Life Sciences, 81(1). DOI: https://doi.org/10.1007/s00018-024-05277-1
Verghese, J. P., Terry, A., De Natale, E. R., & Politis, M. (2022). Research evidence of the role of the glymphatic system and its potential pharmacological modulation in neurodegenerative diseases. Journal of Clinical Medicine, 11(23), 6964. DOI: https://doi.org/10.3390/jcm11236964
Videnovic, A., & Golombek, D. (2012). Circadian and sleep disorders in Parkinson’s disease. Experimental Neurology, 243, 45–56. DOI: https://doi.org/10.1016/j.expneurol.2012.08.018
Voumvourakis, K. I., Sideri, E., Papadimitropoulos, G. N., Tsantzali, I., Hewlett, P., Kitsos, D., Stefanou, M., Bonakis, A., Giannopoulos, S., Tsivgoulis, G., & Paraskevas, G. P. (2023). The Dynamic Relationship between the Glymphatic System, Aging, Memory, and Sleep. Biomedicines, 11(8), 2092. DOI: https://doi.org/10.3390/biomedicines11082092
Wafford, K. A. (2021). Aberrant waste disposal in neurodegeneration: why improved sleep could be the solution. Cerebral Circulation - Cognition and Behavior, 2, 100025. DOI: https://doi.org/10.1016/j.cccb.2021.100025
Wahl, D., & Clayton, Z. S. (2024). Peripheral vascular dysfunction and the aging brain. Aging, 16(10), 9280–9302. DOI: https://doi.org/10.18632/aging.205877
Wang, J., Tian, Y., Qin, C., Meng, L., Feng, R., Xu, S., Zhai, Y., Liang, D., Zhang, R., Tian, H., Liu, H., Chen, Y., Fu, Y., Chen, P., Zhu, Q., Teng, J., & Wang, X. (2023). Impaired glymphatic drainage underlying obstructive sleep apnea is associated with cognitive dysfunction. Journal of Neurology, 270(4), 2204–2216. DOI: https://doi.org/10.1007/s00415-022-11530-z
Weil, Z. M., Norman, G. J., Karelina, K., Morris, J. S., Barker, J. M., Su, A. J., Walton, J. C., Bohinc, S., Nelson, R. J., & DeVries, A. C. (2009). Sleep deprivation attenuates inflammatory responses and ischemic cell death. Experimental Neurology, 218(1), 129–136. DOI: https://doi.org/10.1016/j.expneurol.2009.04.018
Wienecke, M., Werth, E., Poryazova, R., Baumann‐vogel, H., Bassetti, C. L., Weller, M., Waldvogel, D., Storch, A., & Baumann, C. R. (2012). Progressive dopamine and hypocretin deficiencies in Parkinson’s disease: is there an impact on sleep and wakefulness? Journal of Sleep Research, 21(6), 710–717. DOI: https://doi.org/10.1111/j.1365-2869.2012.01027.x
Wostyn, P., & Goddaer, P. (2022). Can meditation-based approaches improve the cleansing power of the glymphatic system? Exploration of Neuroprotective Therapy, 110–117. DOI: https://doi.org/10.37349/ent.2022.00022
Wright, A. M., Wu, Y., Feng, L., & Wen, Q. (2024). Diffusion magnetic resonance imaging of cerebrospinal fluid dynamics: Current techniques and future advancements. NMR in Biomedicine, 37(9). DOI: https://doi.org/10.1002/nbm.5162
Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D. J., Nicholson, C., Iliff, J. J., Takano, T., Deane, R., & Nedergaard, M. (2013). Sleep Drives Metabolite Clearance from the Adult Brain. Science, 342(6156), 373–377. DOI: https://doi.org/10.1126/science.1241224
Xu, L., & Pu, J. (2016). Alpha-Synuclein in Parkinson’s disease: From pathogenetic dysfunction to potential clinical application. Parkinson S Disease, 2016, 1–10. DOI: https://doi.org/10.1155/2016/1720621
Xuan, X., Zhou, G., Chen, C., Shao, A., Zhou, Y., Li, X., & Zhou, J. (2022). Glymphatic System: emerging therapeutic target for neurological diseases. Oxidative Medicine and Cellular Longevity, 2022, 1–14. DOI: https://doi.org/10.1155/2022/6189170
Yan, T., Qiu, Y., Yu, X., & Yang, L. (2021). Glymphatic dysfunction: a bridge between sleep disturbance and mood disorders. Frontiers in Psychiatry, 12. DOI: https://doi.org/10.3389/fpsyt.2021.658340
Yang, E., Ismail, A., Kim, Y., Erdogmus, E., Boron, J., Goldstein, F., DuBose, J., & Zimring, C. (2022). Multidimensional Environmental Factors and Sleep Health for aging Adults: A Focused Narrative review. International Journal of Environmental Research and Public Health, 19(23), 15481. DOI: https://doi.org/10.3390/ijerph192315481
Yi, T., Gao, P., Zhu, T., Yin, H., & Jin, S. (2022). Glymphatic system dysfunction: a novel mediator of sleep disorders and headaches. Frontiers in Neurology, 13. DOI: https://doi.org/10.3389/fneur.2022.885020
Zamore, Z., & Veasey, S. C. (2022). Neural consequences of chronic sleep disruption. Trends in Neurosciences, 45(9), 678–691. DOI: https://doi.org/10.1016/j.tins.2022.05.007
Zhang, R., Liu, Y., Chen, Y., Li, Q., Marshall, C., Wu, T., Hu, G., & Xiao, M. (2019). Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neuroscience & Therapeutics, 26(2), 228–239. DOI: https://doi.org/10.1111/cns.13194
Zhang, Y., & Gruber, R. (2019). Can Slow-Wave Sleep Enhancement Improve Memory? A review of current approaches and cognitive outcomes. The Yale Journal of Biology and Medicine, 92(1), 63–80.
Zhu, T., Yang, J., & Hashimoto, K. (2025). Noradrenergic modulation of glymphatic clearance: implications for neuropsychiatric disorders and mortality. Molecular Psychiatry. DOI: https://doi.org/10.1038/s41380-025-03051-8
Zisberg, A., Gur-Yaish, N., & Shochat, T. (2010). Contribution of routine to sleep quality in community elderly. SLEEP, 33(4), 509–514. DOI: https://doi.org/10.1093/sleep/33.4.509

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.