How Do Plants Prevent Diseases?
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Plants live in environments teeming with microbes, many of which are pathogenic, yet they possess remarkable strategies to prevent diseases and ensure survival. Unlike animals, plants lack mobile immune cells, but they have evolved sophisticated defense systems at structural, molecular, and biochemical levels. These defenses include preformed barriers such as cuticles and cell walls, as well as inducible mechanisms like pathogen recognition receptors, hypersensitive responses, and systemic acquired resistance. Plants also rely on beneficial microbial associations, secondary metabolites, and hormonal regulation to reduce pathogen load and limit disease spread. The ability of plants to defend themselves is crucial not only for their survival but also for global food security, biodiversity, and ecosystem balance. This perspective article explores how plants anticipate, resist, and adapt to constant microbial challenges, highlighting the elegance of their defense systems and the broader implications for agriculture, biotechnology, and sustainable disease management.
##plugins.themes.bootstrap3.article.details##
Plants, Disease Prevention, Sustainability, Defense System, Ecosystem
No funding source declared.
Andersen, E., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. (2018). Disease resistance mechanisms in plants. Genes, 9(7), 339. DOI: https://doi.org/10.3390/genes9070339
Bakker, P. A., Doornbos, R. F., Zamioudis, C., Berendsen, R. L., & Pieterse, C. M. (2013). Induced systemic resistance and the rhizosphere microbiome. The Plant Pathology Journal, 29(2), 136–143. DOI: https://doi.org/10.5423/ppj.si.07.2012.0111
Bigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant, 8(4), 521–539. DOI: https://doi.org/10.1016/j.molp.2014.12.022
Chaliha, C., Rugen, M. D., Field, R. A., & Kalita, E. (2018). Glycans as modulators of plant defense against filamentous pathogens. Frontiers in Plant Science, 9. DOI: https://doi.org/10.3389/fpls.2018.00928
De Jesús Cenobio-Galindo, A., Hernández-Fuentes, A. D., González-Lemus, U., Zaldívar-Ortega, A. K., González-Montiel, L., Madariaga-Navarrete, A., & Hernández-Soto, I. (2024). Biofungicides based on plant extracts: on the road to organic farming. International Journal of Molecular Sciences, 25(13), 6879. DOI: https://doi.org/10.3390/ijms25136879
Du, Y., Han, X., & Tsuda, K. (2024). Microbiome-mediated plant disease resistance: recent advances and future directions. Journal of General Plant Pathology. DOI: https://doi.org/10.1007/s10327-024-01204-1
Finlay, B. B., & McFadden, G. (2006). Anti-Immunology: evasion of the host immune system by bacterial and viral pathogens. Cell, 124(4), 767–782. DOI: https://doi.org/10.1016/j.cell.2006.01.034
Fu, Z. Q., & Dong, X. (2013). Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, 64(1), 839–863. DOI: https://doi.org/10.1146/annurev-arplant-042811-105606
Ghozlan, M. H., El-Argawy, E., Tokgöz, S., Lakshman, D. K., & Mitra, A. (2020). Plant Defense against Necrotrophic Pathogens. American Journal of Plant Sciences, 11(12), 2122–2138. DOI: https://doi.org/10.4236/ajps.2020.1112149
Hönig, M., Roeber, V. M., Schmülling, T., & Cortleven, A. (2023). Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14. DOI: https://doi.org/10.3389/fpls.2023.1146577
Iriti, M., & Vitalini, S. (2021). Plant immunity and crop yield: A Sustainable approach in Agri-Food Systems. Vaccines, 9(2), 121. DOI: https://doi.org/10.3390/vaccines9020121
Jeandet, P. (2015). Phytoalexins: current progress and future prospects. Molecules, 20(2), 2770–2774. DOI: https://doi.org/10.3390/molecules20022770
Kaur, S., Samota, M. K., Choudhary, M., Choudhary, M., Pandey, A. K., Sharma, A., & Thakur, J. (2022). How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants, 28(2), 485–504. DOI: https://doi.org/10.1007/s12298-022-01146-y
Khaliq, A., Perveen, S., Alamer, K. H., Haq, M. Z. U., Rafique, Z., Alsudays, I. M., Althobaiti, A. T., Saleh, M. A., Hussain, S., & Attia, H. (2022). Arbuscular mycorrhizal fungi symbiosis to enhance Plant–Soil interaction. Sustainability, 14(13), 7840. DOI: https://doi.org/10.3390/su14137840
Kong, F., & Yang, L. (2023). Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism? Frontiers in Microbiology, 14. DOI: https://doi.org/10.3389/fmicb.2023.1122947
Petrov, V., Hille, J., Mueller-Roeber, B., & Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6. DOI: https://doi.org/10.3389/fpls.2015.00069
Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews. Immunology, 12(2), 89–100. DOI: https://doi.org/10.1038/nri3141
Wan, J., He, M., Hou, Q., Zou, L., Yang, Y., Wei, Y., & Chen, X. (2021). Cell wall associated immunity in plants. Stress Biology, 1(1). DOI: https://doi.org/10.1007/s44154-021-00003-4
Wang, Y., Li, X., Fan, B., Zhu, C., & Chen, Z. (2021). Regulation and function of Defense-Related Callose deposition in plants. International Journal of Molecular Sciences, 22(5), 2393. DOI: https://doi.org/10.3390/ijms22052393
Zhou, Y., Van Leeuwen, S. K., Pieterse, C. M. J., Bakker, P. a. H. M., & Van Wees, S. C. M. (2019). Effect of atmospheric CO2 on plant defense against leaf and root pathogens of Arabidopsis. European Journal of Plant Pathology, 154(1), 31–42. DOI: https://doi.org/10.1007/s10658-019-01706-1

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.