The Role of Gut Virome in the Overall Population Health
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The gut virome, comprising viruses that inhabit the human gastrointestinal tract, has emerged as a crucial but often overlooked component of the microbiome. While bacteria have historically received the most attention in health research, viruses—particularly bacteriophages—play fundamental roles in shaping microbial ecosystems, modulating immunity, and influencing host physiology. The gut virome interacts with bacterial populations by regulating their abundance and diversity, thereby affecting metabolic pathways and gut homeostasis. Evidence also suggests that viral communities influence susceptibility to chronic diseases, including inflammatory bowel disease, obesity, diabetes, and even neurological disorders. Beyond individual health, the virome contributes to population-level resilience against pathogens by maintaining microbial balance and supporting immune adaptation. However, much of the gut virome remains uncharacterized due to technological challenges in sequencing and interpretation. Understanding its role in overall population health could open new avenues for diagnostics, preventive medicine, and therapeutic strategies aimed at promoting sustainable well-being.
##plugins.themes.bootstrap3.article.details##
Gut Virome, Population, Immunity, Composition, Overall Health
No funding source declared.
Abrescia, N. G., Bamford, D. H., Grimes, J. M., & Stuart, D. I. (2012). Structure unifies the viral universe. Annual Review of Biochemistry, 81(1), 795–822. DOI: https://doi.org/10.1146/annurev-biochem-060910-095130
Ahmed, K., Choi, H., Cho, S., & Yim, J. (2024). Association of Firmicutes/Bacteroidetes Ratio with Body Mass Index in Korean Type 2 Diabetes Mellitus Patients. Metabolites, 14(10), 518. DOI: https://doi.org/10.3390/metabo14100518
Airola, C., Severino, A., Porcari, S., Fusco, W., Mullish, B. H., Gasbarrini, A., Cammarota, G., Ponziani, F. R., & Ianiro, G. (2023). Future modulation of gut microbiota: from eubiotics to FMT, engineered bacteria, and phage therapy. Antibiotics, 12(5), 868. DOI: https://doi.org/10.3390/antibiotics12050868
Arrieta, M., & Finlay, B. B. (2012). The commensal microbiota drives immune homeostasis. Frontiers in Immunology, 3. DOI: https://doi.org/10.3389/fimmu.2012.00033
Beller, L., Deboutte, W., Vieira-Silva, S., Falony, G., Tito, R. Y., Rymenans, L., Yinda, C. K., Vanmechelen, B., Van Espen, L., Jansen, D., Shi, C., Zeller, M., Maes, P., Faust, K., Van Ranst, M., Raes, J., & Matthijnssens, J. (2022). The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences, 119(13). DOI: https://doi.org/10.1073/pnas.2114619119
Beller, L., & Matthijnssens, J. (2019). What is (not) known about the dynamics of the human gut virome in health and disease. Current Opinion in Virology, 37, 52–57. DOI: https://doi.org/10.1016/j.coviro.2019.05.013
Bích, V. T. N., Le, N. G., Barnett, D., Chan, J., Van Best, N., Tien, T. D., Anh, N. T. H., Hoang, T. H., Van Doorn, H. R., Wertheim, H. F. L., & Penders, J. (2022). Moderate and transient impact of antibiotic use on the gut microbiota in a rural Vietnamese cohort. Scientific Reports, 12(1). DOI: https://doi.org/10.1038/s41598-022-24488-9
Boling, L., Cuevas, D. A., Grasis, J. A., Kang, H. S., Knowles, B., Levi, K., Maughan, H., McNair, K., Rojas, M. I., Sanchez, S. E., Smurthwaite, C., & Rohwer, F. (2020). Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes, 11(4), 721–734. DOI: https://doi.org/10.1080/19490976.2019.1701353
Bordon, Y. (2014). A viral understudy for commensal bacteria. Nature Reviews. Immunology, 15(1), 4. DOI: https://doi.org/10.1038/nri3788
Cadwell, K. (2014). Expanding the role of the virome: commensalism in the gut. Journal of Virology, 89(4), 1951–1953. DOI: https://doi.org/10.1128/jvi.02966-14
Carroll, D., Daszak, P., Wolfe, N. D., Gao, G. F., Morel, C. M., Morzaria, S., Pablos-Méndez, A., Tomori, O., & Mazet, J. a. K. (2018). The Global Virome Project. Science, 359(6378), 872–874. DOI: https://doi.org/10.1126/science.aap7463
Cervantes-Echeverría, M., Gallardo-Becerra, L., Cornejo-Granados, F., & Ochoa-Leyva, A. (2023). The Two-Faced Role of CRAssphage Subfamilies in Obesity and Metabolic Syndrome: Between Good and Evil. Genes, 14(1), 139. DOI: https://doi.org/10.3390/genes14010139
Chen, Q., Dharmaraj, T., Cai, P. C., Burgener, E. B., Haddock, N. L., Spakowitz, A. J., & Bollyky, P. L. (2022). Bacteriophage and bacterial susceptibility, resistance, and tolerance to antibiotics. Pharmaceutics, 14(7), 1425. DOI: https://doi.org/10.3390/pharmaceutics14071425
Clemente, J. C., Ursell, L. K., Parfrey, L. W., & Knight, R. (2012). The Impact of the gut microbiota on Human Health: An Integrative view. Cell, 148(6), 1258–1270. DOI: https://doi.org/10.1016/j.cell.2012.01.035
Columpsi, P., Sacchi, P., Zuccaro, V., Cima, S., Sarda, C., Mariani, M., Gori, A., & Bruno, R. (2016). Beyond the gut bacterial microbiota: The gut virome. Journal of Medical Virology, 88(9), 1467–1472. DOI: https://doi.org/10.1002/jmv.24508
De Jonge, P. A., Wortelboer, K., Scheithauer, T. P. M., Van Den Born, B. H., Zwinderman, A. H., Nobrega, F. L., Dutilh, B. E., Nieuwdorp, M., & Herrema, H. (2022). Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome. Nature Communications, 13(1). DOI: https://doi.org/10.1038/s41467-022-31390-5
De Ora, L. O., Wiles, E. T., Zünd, M., Bañuelos, M. S., Haro-Ramirez, N., Suder, D. S., Ujagar, N., Ayala-Angulo, J., Trinh, C., Knitter, C., Gonen, S., Nicholas, D. A., & Wiles, T. J. (2025). Phollow reveals in situ phage transmission dynamics in the zebrafish gut microbiome at single-virion resolution. Nature Microbiology. DOI: https://doi.org/10.1038/s41564-025-01981-1
Desfarges, S., & Ciuffi, A. (2012). Viral integration and consequences on host gene expression. In Springer eBooks (pp. 147–175). DOI: https://doi.org/10.1007/978-94-007-4899-6_7
Desselberger, U. (2021). Significance of the gut microbiome for Viral Diarrheal and Extra-Intestinal diseases. Viruses, 13(8), 1601. DOI: https://doi.org/10.3390/v13081601
Dimitrov, J. D., Mwangi, W., & Zhong, X. (2023). Editorial: Mechanisms and strategies of unconventional antibody diversification for greater immune adaptability. Frontiers in Immunology, 14. DOI: https://doi.org/10.3389/fimmu.2023.1267556
Elois, M. A., Da Silva, R., Von Tönnemann Pilati, G., Rodríguez-Lázaro, D., & Fongaro, G. (2023). Bacteriophages as biotechnological tools. Viruses, 15(2), 349. DOI: https://doi.org/10.3390/v15020349
Ezzatpour, S., Del Carmen Mondragon Portocarrero, A., Cardelle-Cobas, A., Lamas, A., López-Santamarina, A., Miranda, J. M., & Aguilar, H. C. (2023). The Human Gut Virome and Its Relationship with Nontransmissible Chronic Diseases. Nutrients, 15(4), 977. DOI: https://doi.org/10.3390/nu15040977
Fitzgerald, C. B., Shkoporov, A. N., Upadrasta, A., Khokhlova, E. V., Ross, R. P., & Hill, C. (2021). Probing the “Dark matter” of the human gut phageome: culture assisted metagenomics enables rapid discovery and Host-Linking for novel bacteriophages. Frontiers in Cellular and Infection Microbiology, 11. DOI: https://doi.org/10.3389/fcimb.2021.616918
Focà, A., Liberto, M. C., Quirino, A., Marascio, N., Zicca, E., & Pavia, G. (2015). Gut inflammation and immunity: What is the role of the human gut virome? Mediators of Inflammation, 2015(1). DOI: https://doi.org/10.1155/2015/326032
Gao, Y., Sohn, M. B., & Wang, J. (2022). Editorial: Gut virome and human health. Frontiers in Cellular and Infection Microbiology, 12. DOI: https://doi.org/10.3389/fcimb.2022.1043256
Garabatos, N., & Santamaria, P. (2022). Gut microbial antigenic mimicry in autoimmunity. Frontiers in Immunology, 13. DOI: https://doi.org/10.3389/fimmu.2022.873607
García, G., Carlin, M., & De Jesus Cano, R. (2025). Holobiome Harmony: linking environmental sustainability, agriculture, and human health for a thriving planet and one health. Microorganisms, 13(3), 514. DOI: https://doi.org/10.3390/microorganisms13030514
Generoso, J. S., Giridharan, V. V., Lee, J., Macedo, D., & Barichello, T. (2020). The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Brazilian Journal of Psychiatry, 43(3), 293–305. DOI: https://doi.org/10.1590/1516-4446-2020-0987
Harper, A., Vijayakumar, V., Ouwehand, A. C., Ter Haar, J., Obis, D., Espadaler, J., Binda, S., Desiraju, S., & Day, R. (2021). Viral infections, the microbiome, and probiotics. Frontiers in Cellular and Infection Microbiology, 10. DOI: https://doi.org/10.3389/fcimb.2020.596166
Higgins, K. V., Woodie, L. N., Hallowell, H., Greene, M. W., & Schwartz, E. H. (2021). Integrative longitudinal analysis of metabolic phenotype and microbiota changes during the development of obesity. Frontiers in Cellular and Infection Microbiology, 11. DOI: https://doi.org/10.3389/fcimb.2021.671926
Hitch, T. C., Hall, L. J., Walsh, S. K., Leventhal, G. E., Slack, E., De Wouters, T., Walter, J., & Clavel, T. (2022). Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunology, 15(6), 1095–1113. DOI: https://doi.org/10.1038/s41385-022-00564-1
John, H. T., Thomas, T. C., Chukwuebuka, E. C., Ali, A. B., Anass, R., Tefera, Y. Y., Babu, B., Negrut, N., Ferician, A., & Marian, P. (2025). The Microbiota–Human Health Axis. Microorganisms, 13(4), 948. DOI: https://doi.org/10.3390/microorganisms13040948
Jyoti, N., & Dey, P. (2025). Mechanisms and implications of the gut microbial modulation of intestinal metabolic processes. Npj Metabolic Health and Disease, 3(1). DOI: https://doi.org/10.1038/s44324-025-00066-1
Kåhrström, C. T. (2015). A dysbiotic enteric virome. Nature Reviews Microbiology, 13(3), 127. DOI: https://doi.org/10.1038/nrmicro3442
Kernbauer, E., Ding, Y., & Cadwell, K. (2014). An enteric virus can replace the beneficial function of commensal bacteria. Nature, 516(7529), 94–98. DOI: https://doi.org/10.1038/nature13960
Khalil, M., Di Ciaula, A., Mahdi, L., Jaber, N., Di Palo, D. M., Graziani, A., Baffy, G., & Portincasa, P. (2024). Unraveling the role of the human gut microbiome in health and diseases. Microorganisms, 12(11), 2333. DOI: https://doi.org/10.3390/microorganisms12112333
Khosravi, A., & Mazmanian, S. K. (2013). Disruption of the gut microbiome as a risk factor for microbial infections. Current Opinion in Microbiology, 16(2), 221–227. DOI: https://doi.org/10.1016/j.mib.2013.03.009
Kumar, S., Mukherjee, R., Gaur, P., Leal, É., Lyu, X., Ahmad, S., Puri, P., Chang, C., Raj, V. S., & Pandey, R. P. (2025). Unveiling roles of beneficial gut bacteria and optimal diets for health. Frontiers in Microbiology, 16. DOI: https://doi.org/10.3389/fmicb.2025.1 527755
Kurilovich, E., & Geva-Zatorsky, N. (2025). Effects of bacteriophages on gut microbiome functionality. Gut Microbes, 17(1). DOI: https://doi.org/10.1080/19490976.2025.2481178
Liping, Z., Sheng, Y., Yinhang, W., Yifei, S., Jiaqun, H., Xiaojian, Y., Shuwen, H., & Jing, Z. (2024). Comprehensive retrospect and future perspective on bacteriophage and cancer. Virology Journal, 21(1). DOI: https://doi.org/10.1186/s12985-024-02553-1
Lu, M., & Wen, Y. (2014). Interaction of viruses with host immune system and immunomodulation in chronic viral infections. Virologica Sinica, 29(1), 1–2. DOI: https://doi.org/10.1007/s12250-014-3437-7
Maciejewska, B., Olszak, T., & Drulis-Kawa, Z. (2018). Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Applied Microbiology and Biotechnology, 102(6), 2563–2581. DOI: https://doi.org/10.1007/s00253-018-8811-1
Marongiu, L., Burkard, M., Venturelli, S., & Allgayer, H. (2021). Dietary modulation of bacteriophages as an additional player in inflammation and cancer. Cancers, 13(9), 2036. DOI: https://doi.org/10.3390/cancers13092036
Moreno-Gallego, J. L., Chou, S., Di Rienzi, S. C., Goodrich, J. K., Spector, T. D., Bell, J. T., Youngblut, N. D., Hewson, I., Reyes, A., & Ley, R. E. (2019). Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host & Microbe, 25(2), 261-272.e5. DOI: https://doi.org/10.1016/j.chom.2019.01.019
Nabi-Afjadi, M., Teymouri, S., Monfared, F. N., Varnosfaderani, S. M. N., & Halimi, H. (2023). The human Gut phageome: identification and roles in the diseases. Journal of Cellular Signaling, 4(3), 128–141. DOI: https://doi.org/10.33696/signaling.4.100
Nishijima, S., Nagata, N., Kiguchi, Y., Kojima, Y., Miyoshi-Akiyama, T., Kimura, M., Ohsugi, M., Ueki, K., Oka, S., Mizokami, M., Itoi, T., Kawai, T., Uemura, N., & Hattori, M. (2022). Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort. Nature Communications, 13(1). DOI: https://doi.org/10.1038/s41467-022-32832-w
Ogilvie, L. A., & Jones, B. V. (2015). The human gut virome: a multifaceted majority. Frontiers in Microbiology, 6. DOI: https://doi.org/10.3389/fmicb.2015.00918
Ooi, V. Y., & Yeh, T. (2024). Recent advances and mechanisms of Phage-Based therapies in cancer treatment. International Journal of Molecular Sciences, 25(18), 9938. DOI: https://doi.org/10.3390/ijms25189938
Pargin, E., Roach, M. J., Skye, A., Papudeshi, B., Inglis, L. K., Mallawaarachchi, V., Grigson, S. R., Harker, C., Edwards, R. A., & Giles, S. K. (2023). The human gut virome: composition, colonization, interactions, and impacts on human health. Frontiers in Microbiology, 14. DOI: https://doi.org/10.3389/fmicb.2023.963173
Porta, C., Riboldi, E., & Sica, A. (2010). Mechanisms linking pathogens-associated inflammation and cancer. Cancer Letters, 305(2), 250–262. DOI: https://doi.org/10.1016/j.canlet.2010.10.012
Safarchi, A., Al-Qadami, G., Tran, C. D., & Conlon, M. (2025). Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Frontiers in Microbiology, 16. DOI: https://doi.org/10.3389/fmicb.2025.1559521
Saha, P., & Hartmann, P. (2025). Impact of gut microbiome on gut permeability in liver and gut diseases. Microorganisms, 13(6), 1188. DOI: https://doi.org/10.3390/microorganisms13061188
Santiago-Rodriguez, T. M., & Hollister, E. B. (2022). Unraveling the viral dark matter through viral metagenomics. Frontiers in Immunology, 13. DOI: https://doi.org/10.3389/fimmu.2022.1005107
Scarpellini, E., Ianiro, G., Attili, F., Bassanelli, C., De Santis, A., & Gasbarrini, A. (2015). The human gut microbiota and virome: Potential therapeutic implications. Digestive and Liver Disease, 47(12), 1007–1012. DOI: https://doi.org/10.1016/j.dld.2015.07.008
Shabani, M., Ghoshehy, A., Mottaghi, A. M., Chegini, Z., Kerami, A., Shariati, A., & Moghadam, M. T. (2025). The relationship between gut microbiome and human diseases: mechanisms, predisposing factors and potential intervention. Frontiers in Cellular and Infection Microbiology, 15. DOI: https://doi.org/10.3389/fcimb.2025.1516010
Shah, S. A., Deng, L., Thorsen, J., Pedersen, A. G., Dion, M. B., Castro-Mejía, J. L., Silins, R., Romme, F. O., Sausset, R., Jessen, L. E., Ndela, E. O., Hjelmsø, M., Rasmussen, M. A., Redgwell, T. A., Rodríguez, C. L., Vestergaard, G., Zhang, Y., Chawes, B., Bønnelykke, K., . . . Nielsen, D. S. (2023). Expanding known viral diversity in the healthy infant gut. Nature Microbiology, 8(5), 986–998. DOI: https://doi.org/10.1038/s41564-023-01345-7
Sutcliffe, S. G., Shamash, M., Hynes, A. P., & Maurice, C. F. (2021). Common Oral Medications Lead to Prophage Induction in Bacterial Isolates from the Human Gut. Viruses, 13(3), 455. DOI: https://doi.org/10.3390/v13030455
Tabilas, C., Iu, D. S., Daly, C. W. P., Mon, K. J. Y., Reynaldi, A., Wesnak, S. P., Grenier, J. K., Davenport, M. P., Smith, N. L., Grimson, A., & Rudd, B. D. (2022). Early microbial exposure shapes adult immunity by altering CD8+ T cell development. Proceedings of the National Academy of Sciences, 119(49). DOI: https://doi.org/10.1073/pnas.2212548119
Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820. DOI: https://doi.org/10.1016/j.cell.2010.01.022
Wang, C., Zhao, R., Yang, W., Jiang, W., Tang, H., Du, S., & Chen, X. (2025). Cell-to-Cell natural transformation mediated efficient plasmid transfer between bacillus species. International Journal of Molecular Sciences, 26(2), 621. DOI: https://doi.org/10.3390/ijms2602062 1
Wang, G. Q., Gu, Y., Wang, C., Wang, F., & Hsu, A. C. (2022). A game of infection – song of respiratory viruses and interferons. Frontiers in Cellular and Infection Microbiology, 12. DOI: https://doi.org/10.3389/fcimb.2022.937460
Wang, Y., & Kasper, L. H. (2013). The role of microbiome in central nervous system disorders. Brain Behavior and Immunity, 38, 1–12. DOI: https://doi.org/10.1016/j.bbi.2013.12.015
Xiao, L., Wang, J., Zheng, J., Li, X., & Zhao, F. (2021). Deterministic transition of enterotypes shapes the infant gut microbiome at an early age. Genome Biology, 22(1). DOI: https://doi.org/10.1186/s13059-021-02463-3
Yamashina, T., Shimatani, M., Takeo, M., Sasaki, K., Orino, M., Saito, N., Matsumoto, H., Kasai, T., Kano, M., Horitani, S., Sumimoto, K., Mitsuyama, T., Yuba, T., Seki, T., & Naganuma, M. (2022). Viral infection in esophageal, gastric, and colorectal cancer. Healthcare, 10(9), 1626. DOI: https://doi.org/10.3390/healthcare10091626
Yang, Y., Hernandez, M. C., Chitre, S., & Jobin, C. (2025). Emerging roles of modern lifestyle factors in microbiome stability and functionality. Current Clinical Microbiology Reports, 12(1). DOI: https://doi.org/10.1007/s40588-025-00242-3
Yaqub, M. O., Jain, A., Joseph, C. E., & Edison, L. K. (2025). Microbiome-Driven Therapeutics: From gut health to precision medicine. Gastrointestinal Disorders, 7(1), 7. DOI: https://doi.org/10.3390/gidisord7010007
Zhao, S., Fu, D., Lin, Y., Sun, X., Wang, X., Wu, X., & Zhang, X. (2025). The role of the microbiome on immune homeostasis of the host nervous system. Frontiers in Immunology, 16. DOI: https://doi.org/10.3389/fimmu.2025.1609960
Zuppi, M., Hendrickson, H. L., O’Sullivan, J. M., & Vatanen, T. (2022). Phages in the gut ecosystem. Frontiers in Cellular and Infection Microbiology, 11. DOI: https://doi.org/10.3389/fcimb.2021.822562

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.