##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 22, 2025

Walla Vincent  

Abstract

The gut virome, comprising viruses that inhabit the human gastrointestinal tract, has emerged as a crucial but often overlooked component of the microbiome. While bacteria have historically received the most attention in health research, viruses—particularly bacteriophages—play fundamental roles in shaping microbial ecosystems, modulating immunity, and influencing host physiology. The gut virome interacts with bacterial populations by regulating their abundance and diversity, thereby affecting metabolic pathways and gut homeostasis. Evidence also suggests that viral communities influence susceptibility to chronic diseases, including inflammatory bowel disease, obesity, diabetes, and even neurological disorders. Beyond individual health, the virome contributes to population-level resilience against pathogens by maintaining microbial balance and supporting immune adaptation. However, much of the gut virome remains uncharacterized due to technological challenges in sequencing and interpretation. Understanding its role in overall population health could open new avenues for diagnostics, preventive medicine, and therapeutic strategies aimed at promoting sustainable well-being.

##plugins.themes.bootstrap3.article.details##

Keywords

Gut Virome, Population, Immunity, Composition, Overall Health

Supporting Agencies

No funding source declared.

References
Abeles, S. R., Ly, M., Santiago-Rodriguez, T. M., & Pride, D. T. (2015). Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS ONE, 10(8), e0134941. DOI: https://doi.org/10.1371/journal.pone.0134941

Abrescia, N. G., Bamford, D. H., Grimes, J. M., & Stuart, D. I. (2012). Structure unifies the viral universe. Annual Review of Biochemistry, 81(1), 795–822. DOI: https://doi.org/10.1146/annurev-biochem-060910-095130

Ahmed, K., Choi, H., Cho, S., & Yim, J. (2024). Association of Firmicutes/Bacteroidetes Ratio with Body Mass Index in Korean Type 2 Diabetes Mellitus Patients. Metabolites, 14(10), 518. DOI: https://doi.org/10.3390/metabo14100518

Airola, C., Severino, A., Porcari, S., Fusco, W., Mullish, B. H., Gasbarrini, A., Cammarota, G., Ponziani, F. R., & Ianiro, G. (2023). Future modulation of gut microbiota: from eubiotics to FMT, engineered bacteria, and phage therapy. Antibiotics, 12(5), 868. DOI: https://doi.org/10.3390/antibiotics12050868

Arrieta, M., & Finlay, B. B. (2012). The commensal microbiota drives immune homeostasis. Frontiers in Immunology, 3. DOI: https://doi.org/10.3389/fimmu.2012.00033

Beller, L., Deboutte, W., Vieira-Silva, S., Falony, G., Tito, R. Y., Rymenans, L., Yinda, C. K., Vanmechelen, B., Van Espen, L., Jansen, D., Shi, C., Zeller, M., Maes, P., Faust, K., Van Ranst, M., Raes, J., & Matthijnssens, J. (2022). The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences, 119(13). DOI: https://doi.org/10.1073/pnas.2114619119

Beller, L., & Matthijnssens, J. (2019). What is (not) known about the dynamics of the human gut virome in health and disease. Current Opinion in Virology, 37, 52–57. DOI: https://doi.org/10.1016/j.coviro.2019.05.013

Bích, V. T. N., Le, N. G., Barnett, D., Chan, J., Van Best, N., Tien, T. D., Anh, N. T. H., Hoang, T. H., Van Doorn, H. R., Wertheim, H. F. L., & Penders, J. (2022). Moderate and transient impact of antibiotic use on the gut microbiota in a rural Vietnamese cohort. Scientific Reports, 12(1). DOI: https://doi.org/10.1038/s41598-022-24488-9

Boling, L., Cuevas, D. A., Grasis, J. A., Kang, H. S., Knowles, B., Levi, K., Maughan, H., McNair, K., Rojas, M. I., Sanchez, S. E., Smurthwaite, C., & Rohwer, F. (2020). Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes, 11(4), 721–734. DOI: https://doi.org/10.1080/19490976.2019.1701353

Bordon, Y. (2014). A viral understudy for commensal bacteria. Nature Reviews. Immunology, 15(1), 4. DOI: https://doi.org/10.1038/nri3788

Cadwell, K. (2014). Expanding the role of the virome: commensalism in the gut. Journal of Virology, 89(4), 1951–1953. DOI: https://doi.org/10.1128/jvi.02966-14

Carroll, D., Daszak, P., Wolfe, N. D., Gao, G. F., Morel, C. M., Morzaria, S., Pablos-Méndez, A., Tomori, O., & Mazet, J. a. K. (2018). The Global Virome Project. Science, 359(6378), 872–874. DOI: https://doi.org/10.1126/science.aap7463

Cervantes-Echeverría, M., Gallardo-Becerra, L., Cornejo-Granados, F., & Ochoa-Leyva, A. (2023). The Two-Faced Role of CRAssphage Subfamilies in Obesity and Metabolic Syndrome: Between Good and Evil. Genes, 14(1), 139. DOI: https://doi.org/10.3390/genes14010139

Chen, Q., Dharmaraj, T., Cai, P. C., Burgener, E. B., Haddock, N. L., Spakowitz, A. J., & Bollyky, P. L. (2022). Bacteriophage and bacterial susceptibility, resistance, and tolerance to antibiotics. Pharmaceutics, 14(7), 1425. DOI: https://doi.org/10.3390/pharmaceutics14071425

Clemente, J. C., Ursell, L. K., Parfrey, L. W., & Knight, R. (2012). The Impact of the gut microbiota on Human Health: An Integrative view. Cell, 148(6), 1258–1270. DOI: https://doi.org/10.1016/j.cell.2012.01.035

Columpsi, P., Sacchi, P., Zuccaro, V., Cima, S., Sarda, C., Mariani, M., Gori, A., & Bruno, R. (2016). Beyond the gut bacterial microbiota: The gut virome. Journal of Medical Virology, 88(9), 1467–1472. DOI: https://doi.org/10.1002/jmv.24508

De Jonge, P. A., Wortelboer, K., Scheithauer, T. P. M., Van Den Born, B. H., Zwinderman, A. H., Nobrega, F. L., Dutilh, B. E., Nieuwdorp, M., & Herrema, H. (2022). Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome. Nature Communications, 13(1). DOI: https://doi.org/10.1038/s41467-022-31390-5

De Ora, L. O., Wiles, E. T., Zünd, M., Bañuelos, M. S., Haro-Ramirez, N., Suder, D. S., Ujagar, N., Ayala-Angulo, J., Trinh, C., Knitter, C., Gonen, S., Nicholas, D. A., & Wiles, T. J. (2025). Phollow reveals in situ phage transmission dynamics in the zebrafish gut microbiome at single-virion resolution. Nature Microbiology. DOI: https://doi.org/10.1038/s41564-025-01981-1

Desfarges, S., & Ciuffi, A. (2012). Viral integration and consequences on host gene expression. In Springer eBooks (pp. 147–175). DOI: https://doi.org/10.1007/978-94-007-4899-6_7

Desselberger, U. (2021). Significance of the gut microbiome for Viral Diarrheal and Extra-Intestinal diseases. Viruses, 13(8), 1601. DOI: https://doi.org/10.3390/v13081601

Dimitrov, J. D., Mwangi, W., & Zhong, X. (2023). Editorial: Mechanisms and strategies of unconventional antibody diversification for greater immune adaptability. Frontiers in Immunology, 14. DOI: https://doi.org/10.3389/fimmu.2023.1267556

Elois, M. A., Da Silva, R., Von Tönnemann Pilati, G., Rodríguez-Lázaro, D., & Fongaro, G. (2023). Bacteriophages as biotechnological tools. Viruses, 15(2), 349. DOI: https://doi.org/10.3390/v15020349

Ezzatpour, S., Del Carmen Mondragon Portocarrero, A., Cardelle-Cobas, A., Lamas, A., López-Santamarina, A., Miranda, J. M., & Aguilar, H. C. (2023). The Human Gut Virome and Its Relationship with Nontransmissible Chronic Diseases. Nutrients, 15(4), 977. DOI: https://doi.org/10.3390/nu15040977

Fitzgerald, C. B., Shkoporov, A. N., Upadrasta, A., Khokhlova, E. V., Ross, R. P., & Hill, C. (2021). Probing the “Dark matter” of the human gut phageome: culture assisted metagenomics enables rapid discovery and Host-Linking for novel bacteriophages. Frontiers in Cellular and Infection Microbiology, 11. DOI: https://doi.org/10.3389/fcimb.2021.616918

Focà, A., Liberto, M. C., Quirino, A., Marascio, N., Zicca, E., & Pavia, G. (2015). Gut inflammation and immunity: What is the role of the human gut virome? Mediators of Inflammation, 2015(1). DOI: https://doi.org/10.1155/2015/326032

Gao, Y., Sohn, M. B., & Wang, J. (2022). Editorial: Gut virome and human health. Frontiers in Cellular and Infection Microbiology, 12. DOI: https://doi.org/10.3389/fcimb.2022.1043256

Garabatos, N., & Santamaria, P. (2022). Gut microbial antigenic mimicry in autoimmunity. Frontiers in Immunology, 13. DOI: https://doi.org/10.3389/fimmu.2022.873607

García, G., Carlin, M., & De Jesus Cano, R. (2025). Holobiome Harmony: linking environmental sustainability, agriculture, and human health for a thriving planet and one health. Microorganisms, 13(3), 514. DOI: https://doi.org/10.3390/microorganisms13030514

Generoso, J. S., Giridharan, V. V., Lee, J., Macedo, D., & Barichello, T. (2020). The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Brazilian Journal of Psychiatry, 43(3), 293–305. DOI: https://doi.org/10.1590/1516-4446-2020-0987

Harper, A., Vijayakumar, V., Ouwehand, A. C., Ter Haar, J., Obis, D., Espadaler, J., Binda, S., Desiraju, S., & Day, R. (2021). Viral infections, the microbiome, and probiotics. Frontiers in Cellular and Infection Microbiology, 10. DOI: https://doi.org/10.3389/fcimb.2020.596166

Higgins, K. V., Woodie, L. N., Hallowell, H., Greene, M. W., & Schwartz, E. H. (2021). Integrative longitudinal analysis of metabolic phenotype and microbiota changes during the development of obesity. Frontiers in Cellular and Infection Microbiology, 11. DOI: https://doi.org/10.3389/fcimb.2021.671926

Hitch, T. C., Hall, L. J., Walsh, S. K., Leventhal, G. E., Slack, E., De Wouters, T., Walter, J., & Clavel, T. (2022). Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunology, 15(6), 1095–1113. DOI: https://doi.org/10.1038/s41385-022-00564-1

John, H. T., Thomas, T. C., Chukwuebuka, E. C., Ali, A. B., Anass, R., Tefera, Y. Y., Babu, B., Negrut, N., Ferician, A., & Marian, P. (2025). The Microbiota–Human Health Axis. Microorganisms, 13(4), 948. DOI: https://doi.org/10.3390/microorganisms13040948

Jyoti, N., & Dey, P. (2025). Mechanisms and implications of the gut microbial modulation of intestinal metabolic processes. Npj Metabolic Health and Disease, 3(1). DOI: https://doi.org/10.1038/s44324-025-00066-1

Kåhrström, C. T. (2015). A dysbiotic enteric virome. Nature Reviews Microbiology, 13(3), 127. DOI: https://doi.org/10.1038/nrmicro3442

Kernbauer, E., Ding, Y., & Cadwell, K. (2014). An enteric virus can replace the beneficial function of commensal bacteria. Nature, 516(7529), 94–98. DOI: https://doi.org/10.1038/nature13960

Khalil, M., Di Ciaula, A., Mahdi, L., Jaber, N., Di Palo, D. M., Graziani, A., Baffy, G., & Portincasa, P. (2024). Unraveling the role of the human gut microbiome in health and diseases. Microorganisms, 12(11), 2333. DOI: https://doi.org/10.3390/microorganisms12112333

Khosravi, A., & Mazmanian, S. K. (2013). Disruption of the gut microbiome as a risk factor for microbial infections. Current Opinion in Microbiology, 16(2), 221–227. DOI: https://doi.org/10.1016/j.mib.2013.03.009

Kumar, S., Mukherjee, R., Gaur, P., Leal, É., Lyu, X., Ahmad, S., Puri, P., Chang, C., Raj, V. S., & Pandey, R. P. (2025). Unveiling roles of beneficial gut bacteria and optimal diets for health. Frontiers in Microbiology, 16. DOI: https://doi.org/10.3389/fmicb.2025.1 527755

Kurilovich, E., & Geva-Zatorsky, N. (2025). Effects of bacteriophages on gut microbiome functionality. Gut Microbes, 17(1). DOI: https://doi.org/10.1080/19490976.2025.2481178

Liping, Z., Sheng, Y., Yinhang, W., Yifei, S., Jiaqun, H., Xiaojian, Y., Shuwen, H., & Jing, Z. (2024). Comprehensive retrospect and future perspective on bacteriophage and cancer. Virology Journal, 21(1). DOI: https://doi.org/10.1186/s12985-024-02553-1

Lu, M., & Wen, Y. (2014). Interaction of viruses with host immune system and immunomodulation in chronic viral infections. Virologica Sinica, 29(1), 1–2. DOI: https://doi.org/10.1007/s12250-014-3437-7

Maciejewska, B., Olszak, T., & Drulis-Kawa, Z. (2018). Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Applied Microbiology and Biotechnology, 102(6), 2563–2581. DOI: https://doi.org/10.1007/s00253-018-8811-1

Marongiu, L., Burkard, M., Venturelli, S., & Allgayer, H. (2021). Dietary modulation of bacteriophages as an additional player in inflammation and cancer. Cancers, 13(9), 2036. DOI: https://doi.org/10.3390/cancers13092036

Moreno-Gallego, J. L., Chou, S., Di Rienzi, S. C., Goodrich, J. K., Spector, T. D., Bell, J. T., Youngblut, N. D., Hewson, I., Reyes, A., & Ley, R. E. (2019). Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host & Microbe, 25(2), 261-272.e5. DOI: https://doi.org/10.1016/j.chom.2019.01.019

Nabi-Afjadi, M., Teymouri, S., Monfared, F. N., Varnosfaderani, S. M. N., & Halimi, H. (2023). The human Gut phageome: identification and roles in the diseases. Journal of Cellular Signaling, 4(3), 128–141. DOI: https://doi.org/10.33696/signaling.4.100

Nishijima, S., Nagata, N., Kiguchi, Y., Kojima, Y., Miyoshi-Akiyama, T., Kimura, M., Ohsugi, M., Ueki, K., Oka, S., Mizokami, M., Itoi, T., Kawai, T., Uemura, N., & Hattori, M. (2022). Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort. Nature Communications, 13(1). DOI: https://doi.org/10.1038/s41467-022-32832-w

Ogilvie, L. A., & Jones, B. V. (2015). The human gut virome: a multifaceted majority. Frontiers in Microbiology, 6. DOI: https://doi.org/10.3389/fmicb.2015.00918

Ooi, V. Y., & Yeh, T. (2024). Recent advances and mechanisms of Phage-Based therapies in cancer treatment. International Journal of Molecular Sciences, 25(18), 9938. DOI: https://doi.org/10.3390/ijms25189938

Pargin, E., Roach, M. J., Skye, A., Papudeshi, B., Inglis, L. K., Mallawaarachchi, V., Grigson, S. R., Harker, C., Edwards, R. A., & Giles, S. K. (2023). The human gut virome: composition, colonization, interactions, and impacts on human health. Frontiers in Microbiology, 14. DOI: https://doi.org/10.3389/fmicb.2023.963173

Porta, C., Riboldi, E., & Sica, A. (2010). Mechanisms linking pathogens-associated inflammation and cancer. Cancer Letters, 305(2), 250–262. DOI: https://doi.org/10.1016/j.canlet.2010.10.012

Safarchi, A., Al-Qadami, G., Tran, C. D., & Conlon, M. (2025). Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Frontiers in Microbiology, 16. DOI: https://doi.org/10.3389/fmicb.2025.1559521

Saha, P., & Hartmann, P. (2025). Impact of gut microbiome on gut permeability in liver and gut diseases. Microorganisms, 13(6), 1188. DOI: https://doi.org/10.3390/microorganisms13061188

Santiago-Rodriguez, T. M., & Hollister, E. B. (2022). Unraveling the viral dark matter through viral metagenomics. Frontiers in Immunology, 13. DOI: https://doi.org/10.3389/fimmu.2022.1005107

Scarpellini, E., Ianiro, G., Attili, F., Bassanelli, C., De Santis, A., & Gasbarrini, A. (2015). The human gut microbiota and virome: Potential therapeutic implications. Digestive and Liver Disease, 47(12), 1007–1012. DOI: https://doi.org/10.1016/j.dld.2015.07.008

Shabani, M., Ghoshehy, A., Mottaghi, A. M., Chegini, Z., Kerami, A., Shariati, A., & Moghadam, M. T. (2025). The relationship between gut microbiome and human diseases: mechanisms, predisposing factors and potential intervention. Frontiers in Cellular and Infection Microbiology, 15. DOI: https://doi.org/10.3389/fcimb.2025.1516010

Shah, S. A., Deng, L., Thorsen, J., Pedersen, A. G., Dion, M. B., Castro-Mejía, J. L., Silins, R., Romme, F. O., Sausset, R., Jessen, L. E., Ndela, E. O., Hjelmsø, M., Rasmussen, M. A., Redgwell, T. A., Rodríguez, C. L., Vestergaard, G., Zhang, Y., Chawes, B., Bønnelykke, K., . . . Nielsen, D. S. (2023). Expanding known viral diversity in the healthy infant gut. Nature Microbiology, 8(5), 986–998. DOI: https://doi.org/10.1038/s41564-023-01345-7

Sutcliffe, S. G., Shamash, M., Hynes, A. P., & Maurice, C. F. (2021). Common Oral Medications Lead to Prophage Induction in Bacterial Isolates from the Human Gut. Viruses, 13(3), 455. DOI: https://doi.org/10.3390/v13030455

Tabilas, C., Iu, D. S., Daly, C. W. P., Mon, K. J. Y., Reynaldi, A., Wesnak, S. P., Grenier, J. K., Davenport, M. P., Smith, N. L., Grimson, A., & Rudd, B. D. (2022). Early microbial exposure shapes adult immunity by altering CD8+ T cell development. Proceedings of the National Academy of Sciences, 119(49). DOI: https://doi.org/10.1073/pnas.2212548119

Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820. DOI: https://doi.org/10.1016/j.cell.2010.01.022

Wang, C., Zhao, R., Yang, W., Jiang, W., Tang, H., Du, S., & Chen, X. (2025). Cell-to-Cell natural transformation mediated efficient plasmid transfer between bacillus species. International Journal of Molecular Sciences, 26(2), 621. DOI: https://doi.org/10.3390/ijms2602062 1

Wang, G. Q., Gu, Y., Wang, C., Wang, F., & Hsu, A. C. (2022). A game of infection – song of respiratory viruses and interferons. Frontiers in Cellular and Infection Microbiology, 12. DOI: https://doi.org/10.3389/fcimb.2022.937460

Wang, Y., & Kasper, L. H. (2013). The role of microbiome in central nervous system disorders. Brain Behavior and Immunity, 38, 1–12. DOI: https://doi.org/10.1016/j.bbi.2013.12.015

Xiao, L., Wang, J., Zheng, J., Li, X., & Zhao, F. (2021). Deterministic transition of enterotypes shapes the infant gut microbiome at an early age. Genome Biology, 22(1). DOI: https://doi.org/10.1186/s13059-021-02463-3

Yamashina, T., Shimatani, M., Takeo, M., Sasaki, K., Orino, M., Saito, N., Matsumoto, H., Kasai, T., Kano, M., Horitani, S., Sumimoto, K., Mitsuyama, T., Yuba, T., Seki, T., & Naganuma, M. (2022). Viral infection in esophageal, gastric, and colorectal cancer. Healthcare, 10(9), 1626. DOI: https://doi.org/10.3390/healthcare10091626

Yang, Y., Hernandez, M. C., Chitre, S., & Jobin, C. (2025). Emerging roles of modern lifestyle factors in microbiome stability and functionality. Current Clinical Microbiology Reports, 12(1). DOI: https://doi.org/10.1007/s40588-025-00242-3

Yaqub, M. O., Jain, A., Joseph, C. E., & Edison, L. K. (2025). Microbiome-Driven Therapeutics: From gut health to precision medicine. Gastrointestinal Disorders, 7(1), 7. DOI: https://doi.org/10.3390/gidisord7010007

Zhao, S., Fu, D., Lin, Y., Sun, X., Wang, X., Wu, X., & Zhang, X. (2025). The role of the microbiome on immune homeostasis of the host nervous system. Frontiers in Immunology, 16. DOI: https://doi.org/10.3389/fimmu.2025.1609960

Zuppi, M., Hendrickson, H. L., O’Sullivan, J. M., & Vatanen, T. (2022). Phages in the gut ecosystem. Frontiers in Cellular and Infection Microbiology, 11. DOI: https://doi.org/10.3389/fcimb.2021.822562
How to Cite
Vincent, W. (2025). The Role of Gut Virome in the Overall Population Health. Science Insights, 47(3), 1967–1977. https://doi.org/10.15354/si.25.re1210
Section
Review