##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 30, 2025

Rachel Eglinton  

Abstract

Brain-to-AI adaptive feedback systems refer to a class of technologies in which neurophysiological signals from human brains are used in real time to adapt the behavior of artificial intelligence systems, creating closed‐loop feedback that can adjust according to the mental, emotional, or cognitive state of the user. These systems sit at the intersection of brain-computer interfaces (BCIs), neurofeedback, affective computing, adaptive learning, and AI, and promise to transform domains ranging from education and rehabilitation to human–machine collaboration and mental health. But with great promise come profound technical, ethical, and societal challenges: issues of signal fidelity and latency; interpretability and trust; individual variability; data privacy and autonomy; potential for bias and misuse. In this opinion piece I explore the potential benefits of brain-to-AI adaptive feedback systems, the key obstacles they face, and the governance, design, and value judgments that must guide their development if they are to enhance human well-being rather than undermine it.

##plugins.themes.bootstrap3.article.details##

Keywords

Brain–Computer Interface, Adaptive Artificial Intelligence, Neurofeedback, Human–AI Interaction, Cognitive Augmentation

Supporting Agencies

No funding source declared.

References
Afroogh, S., Akbari, A., Malone, E., Kargar, M., & Alambeigi, H. (2024). Trust in AI: Progress, challenges, and future directions. Humanities and Social Sciences Communications, 11(1), 4044. DOI: https://doi.org/10.1057/s41599-024-04044-8

Angulo, J. A., Dapena, E., & Aguilar, J. (2024). Emotions as implicit feedback for adapting difficulty in tutoring systems based on reinforcement learning. Education and Information Technologies, 29(16), 21015. DOI: https://doi.org/10.1007/s10639-024-12699-8

Baradari, D., Kosmyna, N., Petrov, O. V., Kaplun, R., & Maes, P. (2025). NeuroChat: A neuroadaptive AI chatbot for customizing learning experiences. ACM Transactions on Interactive Intelligent Systems, 1, 1–29. DOI: https://doi.org/10.1145/3719160.3736623

Belwafi, K., & Ghaffari, F. (2024). Thought-controlled computer applications: A brain–computer interface system for severe disability support. Sensors, 24(20), 6759. DOI: https://doi.org/10.3390/s24206759

Jwa, A. S., & Poldrack, R. A. (2022). Addressing privacy risk in neuroscience data: From data protection to harm prevention. Journal of Law and the Biosciences, 9(2), lsac025. DOI: https://doi.org/10.1093/jlb/lsac025

Koelewijn, A. D., Audu, M. L., del-Ama, A. J., Colucci, A., Font-Llagunes, J. M., Gogeascoechea, A., Hnat, S. K., Makowski, N., Moreno, J. C., Nandor, M. J., Quinn, R. D., Reichenbach, M., Reyes, R.-D., Sartori, M., Soekadar, S. R., Triolo, R. J., Vermehren, M., Wenger, C., Yavuz, U. Ş., … Beckerle, P. (2021). Adaptation strategies for personalized gait neuroprosthetics. Frontiers in Neurorobotics, 15, 750519. DOI: https://doi.org/10.3389/fnbot.2021.750519

Kostas, D., & Rudzicz, F. (2020). Thinker invariance: Enabling deep neural networks for BCI across more people. Journal of Neural Engineering, 17(5), 056008. DOI: https://doi.org/10.1088/1741-2552/abb7a7

Laitinen, A., & Sahlgren, O. (2021). AI systems and respect for human autonomy. Frontiers in Artificial Intelligence, 4, 705164. DOI: https://doi.org/10.3389/frai.2021.705164

Valeriani, D., Santoro, F., & Ienca, M. (2022). The present and future of neural interfaces. Frontiers in Neurorobotics, 16, 953968. DOI: https://doi.org/10.3389/fnbot.2022.953968

Weld, D. S., & Bansal, G. (2019). The challenge of crafting intelligible intelligence. Communications of the ACM, 62(6), 70–79. DOI: https://doi.org/10.1145/3282486
How to Cite
Eglinton, R. (2025). Brain-to-AI Adaptive Feedback Systems: The Next Frontier of Human–Machine Symbiosis. Science Insights, 47(4), 1987–1990. https://doi.org/10.15354/si.25.op349
Section
Opinion