##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 30, 2025

George Kolins  

Alexis M. Sacconi

Abstract

Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis, are characterized by progressive loss of neurons and neural function, leading to cognitive and motor impairments. Current pharmacological treatments primarily offer symptomatic relief without addressing the underlying neuronal degeneration. Cell-based therapies have emerged as a promising approach to restore neuronal function, modulate neuroinflammation, and promote tissue repair. Various cell types, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, and neural stem/progenitor cells, have demonstrated potential in preclinical and early clinical studies. These therapies aim to replace lost neurons, secrete neurotrophic factors, and create a supportive microenvironment for endogenous repair. Despite encouraging results, challenges remain regarding cell survival, differentiation, immune rejection, tumorigenicity, and ethical considerations. This review summarizes recent advances in cell therapies for neurodegenerative diseases, highlights clinical applications, and discusses future perspectives for translating these therapies into effective treatments.

##plugins.themes.bootstrap3.article.details##

Keywords

Stem Cells, Neurodegeneration, Neuronal Replacement, Neuroprotection, Microenvironment Remodeling

Supporting Agencies

No funding source declared

References
Alekseenko, Z., Dias, J. M., Adler, A. F., Kozhevnikova, M. N., van Lunteren, J. A., Nolbrant, S., Jeggari, A., Vasylovska, S., Yoshitake, T., Kehr, J., Carlén, M., Alexeyenko, A., Parmar, M., & Ericson, J. (2022). Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery. Nature Communications, 13(1), 3046. DOI: https://doi.org/10.1038/s41467-022-30777-8

Al-Mayyahi, R. S. (2021). Neural stem cells as a promising therapeutic approach in neurological diseases. Bulletin of Pharmaceutical Sciences Assiut, 44(2), 525–536. DOI: https://doi.org/10.21608/bfsa.2021.207179

Almeida, M. M. A. de, Goodkey, K., & Voronova, A. (2023). Regulation of microglia function by neural stem cells. Frontiers in Cellular Neuroscience, 17, 1130205. DOI: https://doi.org/10.3389/fncel.2023.1130205

Armijo, E., Edwards, G. A., Flores, A., Vera, J., Shahnawaz, M., Moda, F., González, C., Sanhueza, M., & Soto, C. (2021). Induced pluripotent stem cell-derived neural precursors improve memory, synaptic and pathological abnormalities in a mouse model of Alzheimer’s disease. Cells, 10(7), 1802. DOI: https://doi.org/10.3390/cells10071802

Borodinsky, L. N., Root, C. M., Cronin, J. A., Sann, S. B., Gu, X., & Spitzer, N. C. (2004). Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature, 429(6991), 523–530. DOI: https://doi.org/10.1038/nature02518

Bouchez, G., Sensebé, L., Vourc’h, P., Garreau, L., Bodard, S., Rico, A., Guilloteau, D., Charbord, P., Besnard, J., & Chalon, S. (2008). Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochemistry International, 52(7), 1332–1341. DOI: https://doi.org/10.1016/j.neuint.2008.02.003

Bouvier, D., Fixemer, S., Heurtaux, T., Jeannelle, F., Frauenknecht, K., & Mittelbronn, M. (2022). The multifaceted neurotoxicity of astrocytes in ageing and age-related neurodegenerative diseases: A translational perspective. Frontiers in Physiology, 13, 814889. DOI: https://doi.org/10.3389/fphys.2022.814889

Čaprnda, M., Kubatka, P., Gazdíková, K., Gašparová, I., Valentová, V., Stollárová, N., Rocca, G. L., Kobyliak, N., Dragašek, J., Mozoš, I., Prosecký, R., Siniscalco, D., Büsselberg, D., Rodrigo, L., & Kružliak, P. (2017). Immunomodulatory effects of stem cells: Therapeutic option for neurodegenerative disorders. Biomedicine & Pharmacotherapy, 91, 60–69. DOI: https://doi.org/10.1016/j.biopha.2017.04.034

Cha, Z., Qiao, Y., Lu, Q., Wang, Q., Lu, X., Zhou, H., & Li, T. (2024). Research progress and challenges of stem cell therapy for ischemic stroke. Frontiers in Cell and Developmental Biology, 12, 1410732. DOI: https://doi.org/10.3389/fcell.2024.1410732

Chan, H. J., Roy, J., Tipoe, G. L., Fung, M., & Lim, L. W. (2021). Therapeutic potential of human stem cell implantation in Alzheimer’s disease. International Journal of Molecular Sciences, 22(18), 10151. DOI: https://doi.org/10.3390/ijms221810151

Charlton, T., Prowse, N., McFee, A., Heiratifar, N., Fortin, T., Paquette, C., & Hayley, S. (2023). Brain-derived neurotrophic factor (BDNF) has direct anti-inflammatory effects on microglia. Frontiers in Cellular Neuroscience, 17, 1188672. DOI: https://doi.org/10.3389/fncel.2023.1188672

Chen, X., Yin, X., Wang, C.-C., Du, P., Wang, X., Lu, Y., Sun, Y., Sun, Y.-H., & Hu, Y. (2022). Muse cells decrease the neuroinflammatory response by modulating the proportion of M1 and M2 microglia in vitro. Neural Regeneration Research, 18(1), 213. DOI: https://doi.org/10.4103/1673-5374.343885

Condic, M. L., & Rao, M. S. (2010). Alternative sources of pluripotent stem cells: Ethical and scientific issues revisited. Stem Cells and Development, 19(8), 1121–1129. DOI: https://doi.org/10.1089/scd.2009.0482

Dabrowska, S., Andrzejewska, A., Janowski, M., & Łukomska, B. (2021). Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: Therapeutic outlook for inflammatory and degenerative diseases. Frontiers in Immunology, 11, 591065. DOI: https://doi.org/10.3389/fimmu.2020.591065

Dabrowska, S., Andrzejewska, A., Łukomska, B., & Janowski, M. (2019). Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. Journal of Neuroinflammation, 16(1), 178. DOI: https://doi.org/10.1186/s12974-019-1571-8

Dantuma, E., Merchant, S., & Sugaya, K. (2010). Stem cells for the treatment of neurodegenerative diseases. Stem Cell Research & Therapy, 1(5), 37. DOI: https://doi.org/10.1186/scrt37

Dause, T. J., Denninger, J. K., Smith, B. M., & Kirby, E. D. (2022). The neural stem cell secretome across neurodevelopment. Experimental Neurology, 355, 114142. DOI: https://doi.org/10.1016/j.expneurol.2022.114142

Deng, S., Xie, H., & Xie, B. (2025). Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases. Stem Cell Research & Therapy, 16(1), 167. DOI: https://doi.org/10.1186/s13287-025-04285-7

Duranti, E., & Villa, C. (2023). Muscle involvement in amyotrophic lateral sclerosis: Understanding the pathogenesis and advancing therapeutics. Biomolecules, 13(11), 1582. DOI: https://doi.org/10.3390/biom13111582

Escribá, R., Beksaç, M., Bennaceur‐Griscelli, A., Glover, J. C., Koskela, S., Latsoudis, H., Querol, S., & Álvarez-Palomo, B. (2024). Current landscape of iPSC haplobanks. Stem Cell Reviews and Reports, 20(8), 2155–2171. DOI: https://doi.org/10.1007/s12015-024-10783-7

Falkner, S., & Scheiffele, P. (2019). Architects of neuronal wiring. Science, 364(6439), 437–438. DOI: https://doi.org/10.1126/science.aax3221

Fischer, I., Dulin, J. N., & Lane, M. A. (2020). Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nature Reviews Neuroscience, 21(7), 366–383. DOI: https://doi.org/10.1038/s41583-020-0314-2

Flavell, S. W., & Greenberg, M. E. (2008). Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annual Review of Neuroscience, 31, 563–590. DOI: https://doi.org/10.1146/annurev.neuro.31.060407.125631

Fox, I. J., Daley, G. Q., Goldman, S. A., Huard, J., Kamp, T. J., & Trucco, M. (2014). Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science, 345(6199), 1247391. DOI: https://doi.org/10.1126/science.1247391

Fričová, D., Korchak, J. A., & Zubair, A. C. (2020). Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson’s disease. NPJ Regenerative Medicine, 5(1), 1. DOI: https://doi.org/10.1038/s41536-020-00106-y

Gadhave, D., Sugandhi, V. V., Jha, S. K., Nangare, S., Gupta, G., Singh, S. K., Dua, K., Cho, H., Hansbro, P. M., & Paudel, K. R. (2024). Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Research Reviews, 99, 102357. DOI: https://doi.org/10.1016/j.arr.2024.102357

Gharaibeh, A., Culver, R., Stewart, A. N., Srinageshwar, B., Spelde, K., Frollo, L., Kolli, N., Story, D., Paladugu, L., Anwar, S., Crane, A., Wyse, R., Maiti, P., Dunbar, G., & Rossignol, J. (2017). Induced pluripotent stem cell-derived neural stem cell transplantations reduced behavioral deficits and ameliorated neuropathological changes in YAC128 mouse model of Huntington’s disease. Frontiers in Neuroscience, 11, 628. DOI: https://doi.org/10.3389/fnins.2017.00628

Gioia, R., Biella, F., Citterio, G., Rizzo, F., Abati, E., Nizzardo, M., Bresolin, N., Comi, G. P., & Corti, S. (2020). Neural stem cell transplantation for neurodegenerative diseases. International Journal of Molecular Sciences, 21(9), 3103. DOI: https://doi.org/10.3390/ijms21093103

Gotoh, S., Kawabori, M., & Fujimura, M. (2023). Intranasal administration of stem cell-derived exosomes for central nervous system diseases. Neural Regeneration Research, 19(6), 1249–1257. DOI: https://doi.org/10.4103/1673-5374.385875

Götz, M., & Bocchi, R. (2021). Neuronal replacement: Concepts, achievements, and call for caution. Current Opinion in Neurobiology, 69, 185–193. DOI: https://doi.org/10.1016/j.conb.2021.03.014

Guan, F., Huang, T., Wang, X., Xing, Q., Gumpper, K., Li, P., Song, J., Tan, T., Yang, G., Zang, X., Zhang, J., Wang, Y., Yang, Y., Liu, Y., Zhang, Y., Yang, B., Ma, J., & Ma, S. (2019). The TRIM protein Mitsugumin 53 enhances survival and therapeutic efficacy of stem cells in murine traumatic brain injury. Stem Cell Research & Therapy, 10(1), 304. DOI: https://doi.org/10.1186/s13287-019-1433-4

Guttikonda, S. R., Sikkema, L., Tchieu, J., Saurat, N., Walsh, R., Harschnitz, O., Ciceri, G., Sneeboer, M. A. M., Mažutis, L., Setty, M., Zumbo, P., Betel, D., de Witte, L. D., Pe’er, D., & Studer, L. (2021). Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease. Nature Neuroscience, 24(3), 343–358. DOI: https://doi.org/10.1038/s41593-020-00796-z

Hade, M. D., Suire, C. N., & Suo, Z. (2021). Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine. Cells, 10(8), 1959. DOI: https://doi.org/10.3390/cells10081959

Harary, P. M., Jgamadze, D., Kim, J., Wolf, J. A., Song, H., Ming, G., Cullen, D. K., & Chen, H. I. (2023). Cell replacement therapy for brain repair: Recent progress and remaining challenges for treating Parkinson’s disease and cortical injury. Brain Sciences, 13(12), 1654. DOI: https://doi.org/10.3390/brainsci13121654

Harding, J., Vintersten-Nagy, K., Yang, H., Tang, J. K., Shutova, M. V., de Jong, E., Lee, J. H., Massumi, M., Oussenko, T., Izadifar, Z., Zhang, P., Rogers, I. M., Wheeler, M. B., Lye, S. J., Sung, H., Li, C., Izadifar, M., & Nagy, A. (2023). Immune-privileged tissues formed from immunologically cloaked mouse embryonic stem cells survive long term in allogeneic hosts. Nature Biomedical Engineering, 8(4), 427–443. DOI: https://doi.org/10.1038/s41551-023-01133-y

Hargus, G., Cooper, O., Deleidi, M., Levy, A., Lee, K., Marlow, E., Yow, A., Soldner, F., Hockemeyer, D., Hallett, P. J., Osborn, T., Jaenisch, R., & Isacson, O. (2010). Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proceedings of the National Academy of Sciences, 107(36), 15921–15926. DOI: https://doi.org/10.1073/pnas.1010209107

Harrell, C. R., Volarevic, A., Djonov, V., & Volarević, V. (2021). Mesenchymal stem cell-derived exosomes as new remedy for the treatment of neurocognitive disorders. International Journal of Molecular Sciences, 22(3), 1433. DOI: https://doi.org/10.3390/ijms22031433

Hart, D. A. (2023). Use of brain-derived stem/progenitor cells and derived extracellular vesicles to repair damaged neural tissues: Lessons learned from connective tissue repair regarding variables limiting progress and approaches to overcome limitations. International Journal of Molecular Sciences, 24(4), 3370. DOI: https://doi.org/10.3390/ijms24043370

Hayashi, Y., Lin, H.-T., Lee, C.-C., & Tsai, K. (2020). Effects of neural stem cell transplantation in Alzheimer’s disease models. Journal of Biomedical Science, 27(1), 50. DOI: https://doi.org/10.1186/s12929-020-0622-x

Hermann, D. M., & Gunzer, M. (2021). Modulating microglial cells for promoting brain recovery and repair. Frontiers in Cellular Neuroscience, 14, 627987. DOI: https://doi.org/10.3389/fncel.2020.627987

Hernández, A., & García, E. (2021). Mesenchymal stem cell therapy for Alzheimer’s disease. Stem Cells International, 2021, 7834421. DOI: https://doi.org/10.1155/2021/7834421

Horie, N., Pereira, M. P., Niizuma, K., Sun, G., Keren‐Gill, H., Encarnacion, A., Shamloo, M., Hamilton, S., Jiang, K., Huhn, S. L., Palmer, T. D., Bliss, T., & Steinberg, G. K. (2011). Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells, 29(2), 274–285. DOI: https://doi.org/10.1002/stem.584

Jang, Y.-Y., & Ye, Z. (2016). Gene correction in patient-specific iPSCs for therapy development and disease modeling. Human Genetics, 135(9), 1041–1058. DOI: https://doi.org/10.1007/s00439-016-1691-5

Kamila, P., Kar, K., Chowdhury, S., Chakraborty, P., Dutta, R., Sowmiya, S., S, A. S., & Prajapati, B. G. (2025). Effect of neuroinflammation on the progression of Alzheimer’s disease and its significant ramifications for novel anti-inflammatory treatments. IBRO Neuroscience Reports, 18, 771–783. DOI: https://doi.org/10.1016/j.ibneur.2025.05.005

Kim, S., Jung, U. J., & Kim, S. R. (2025). The crucial role of the blood–brain barrier in neurodegenerative diseases: Mechanisms of disruption and therapeutic implications. Journal of Clinical Medicine, 14(2), 386. DOI: https://doi.org/10.3390/jcm14020386

Kim, Y. A., Park, J., Lee, G., Bang, O. Y., Ahn, Y. H., Joe, E., Kim, H. O., & Lee, P. H. (2008). Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti‐inflammatory action. Glia, 57(1), 13–23. DOI: https://doi.org/10.1002/glia.20731

Lacalle‐Aurioles, M., de Camps, C. C., Zorca, C. E., Beitel, L. K., & Durcan, T. M. (2020). Applying hiPSCs and biomaterials towards an understanding and treatment of traumatic brain injury. Frontiers in Cellular Neuroscience, 14, 594304. DOI: https://doi.org/10.3389/fncel.2020.594304

Li, M., Chen, H., & Zhu, M. (2022). Mesenchymal stem cells for regenerative medicine in central nervous system. Frontiers in Neuroscience, 16, 1068114. DOI: https://doi.org/10.3389/fnins.2022.1068114

Limone, F., Klim, J. R., & Mordes, D. A. (2022). Pluripotent stem cell strategies for rebuilding the human brain. Frontiers in Aging Neuroscience, 14, 1017299. DOI: https://doi.org/10.3389/fnagi.2022.1017299

Lindvall, O., & Kokaia, Z. (2010). Stem cells in human neurodegenerative disorders — time for clinical translation? Journal of Clinical Investigation, 120(1), 29–40. DOI: https://doi.org/10.1172/jci40543

Liu, E., Karpf, L., & Bohl, D. (2021). Neuroinflammation in amyotrophic lateral sclerosis and frontotemporal dementia and the interest of induced pluripotent stem cells to study immune cells interactions with neurons. Frontiers in Molecular Neuroscience, 14, 767041. DOI: https://doi.org/10.3389/fnmol.2021.767041

Lively, S., & Schlichter, L. C. (2018). Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Frontiers in Cellular Neuroscience, 12, 215. DOI: https://doi.org/10.3389/fncel.2018.00215

Lombardi, I., Ferrero, C., Vulcano, E., Rasà, D. M., Gelati, M., Pastor, D., Carletti, R. M., de la Morena, S., Profico, D. C., Longobardi, S., Lazzarino, E., Perciballi, E., Rosati, J., Martínez, S., Vercelli, A., Vescovi, A. L., Boido, M., & Ferrari, D. (2025). Safety and efficacy evaluation of intracerebroventricular human neural stem cell transplantation in SOD1 mice as a novel approach for ALS. Journal of Translational Medicine, 23(1), 65. DOI: https://doi.org/10.1186/s12967-025-06529-9

Luciani, M., Garsia, C., Beretta, S., Cifola, I., Peano, C., Merelli, I., Petiti, L., Miccio, A., Meneghini, V., & Gritti, A. (2024). Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice. Nature Communications, 15(1), 53613. DOI: https://doi.org/10.1038/s41467-024-53613-7

Mello, E., Sorrentino, S., Bucciarelli, A., Cordelli, E., Di Luca, E., Nygaard, H. B., Wendt, S., Rainer, A., Gigli, G., Moroni, L., Polini, A., & Mozetic, P. (2025). Geometrical constraints dictate assembly and phenotype of human iPSC-derived motoneuronal spheroids. Stem Cell Research & Therapy, 16(1), 547. DOI: https://doi.org/10.1186/s13287-025-04547-4

Michalak, K., & Michalak, A. (2025). Understanding chronic inflammation: Couplings between cytokines, ROS, NO, Cai2+, HIF-1α, Nrf2 and autophagy. Frontiers in Immunology, 16, 1558263. DOI: https://doi.org/10.3389/fimmu.2025.1558263

Moghadasi, S., Elveny, M., Rahman, H. S., Suksatan, W., Jalil, A. T., Abdelbasset, W. K., Yumashev, A. V., Shariatzadeh, S., Motavalli, R., Behzad, F., Marofi, F., Hassanzadeh, A., Pathak, Y., & Jarahian, M. (2021). A paradigm shift in cell-free approach: The emerging role of MSCs-derived exosomes in regenerative medicine. Journal of Translational Medicine, 19(1), 198. DOI: https://doi.org/10.1186/s12967-021-02980-6

Mohammadipoor, A., Antebi, B., Batchinsky, A. I., & Cancio, L. C. (2018). Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respiratory Research, 19(1), 202. DOI: https://doi.org/10.1186/s12931-018-0921-x

Moretti, E., Lin, A., Peruzzotti‐Jametti, L., Pluchino, S., & Mozafari, S. (2025). Neural stem cell-derived extracellular vesicles for advanced neural repair. Journal of Neurochemistry, 169(8), 70170. DOI: https://doi.org/10.1111/jnc.70170

Neal, M., & Richardson, J. R. (2017). Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(2), 432–443. DOI: https://doi.org/10.1016/j.bbadis.2017.11.004

Nguyen, H., Zarriello, S., Coats, A. B., Nelson, C., Kingsbury, C., Gorsky, A., Rajani, M., Neal, E. G., & Borlongan, C. V. (2018). Stem cell therapy for neurological disorders: A focus on aging. Neurobiology of Disease, 126, 85–98. DOI: https://doi.org/10.1016/j.nbd.2018.09.011

Ni, W., Ramalingam, M., Li, Y., Park, J.-H., Dashnyam, K., Lee, J., Bloise, N., Fassina, L., Visai, L., De Angelis, M. G. C., Pedraz, J. L., Kim, H., & Hu, J. (2023). Immunomodulatory and anti-inflammatory effect of neural stem/progenitor cells in the central nervous system. Stem Cell Reviews and Reports, 19(4), 866–880. DOI: https://doi.org/10.1007/s12015-022-10501-1

Nicaise, A. M., D’Angelo, A., Ionescu, R.-B., Krzak, G., Willis, C. M., & Pluchino, S. (2021). The role of neural stem cells in regulating glial scar formation and repair. Cell and Tissue Research, 387(3), 399–415. DOI: https://doi.org/10.1007/s00441-021-03554-0

Nsair, A., & MacLellan, W. R. (2011). Induced pluripotent stem cells for regenerative cardiovascular therapies and biomedical discovery. Advanced Drug Delivery Reviews, 63(4–5), 324–331. DOI: https://doi.org/10.1016/j.addr.2011.01.013

O’Donnell, J. C., Purvis, E. M., Helm, K. V. T., Adewole, D. O., Zhang, Q., Le, A. D., & Cullen, D. K. (2021). An implantable human stem cell-derived tissue-engineered rostral migratory stream for directed neuronal replacement. Communications Biology, 4(1), 392. DOI: https://doi.org/10.1038/s42003-021-02392-8

Ohtaki, H., Ylöstalo, J., Foraker, J., Robinson, A. P., Reger, R. L., Shioda, S., & Prockop, D. J. (2008). Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proceedings of the National Academy of Sciences, 105(38), 14638–14643. DOI: https://doi.org/10.1073/pnas.0803670105

Oyarce, K., Cepeda, M. Y., Lagos, R., Garrido, C., Vega-Letter, A. M., García, M. de los Á., Luz-Crawford, P., & Elizondo-Vega, R. (2022). Neuroprotective and neurotoxic effects of glial-derived exosomes. Frontiers in Cellular Neuroscience, 16, 920686. DOI: https://doi.org/10.3389/fncel.2022.920686

Palomo, A. B. A., McLenachan, S., Chen, F. K., da Cruz, L., Dilley, R. J., Osete, J. R., Lucas, M., Lucas, A., Drukker, M., & Edel, M. J. (2015). Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration. Fibrogenesis & Tissue Repair, 8(1), 26. DOI: https://doi.org/10.1186/s13069-015-0026-9

Pardillo-Díaz, R., Pérez-García, P., Castro, C., Nunez-Abades, P., & Carrascal, L. (2022). Oxidative stress as a potential mechanism underlying membrane hyperexcitability in neurodegenerative diseases. Antioxidants, 11(8), 1511. DOI: https://doi.org/10.3390/antiox11081511

Pekdemir, B., Raposo, A., Saraiva, A., Lima, M. J., Alsharari, Z. D., BinMowyna, M. N., & Karav, S. (2024). Mechanisms and potential benefits of neuroprotective agents in neurological health. Nutrients, 16(24), 4368. DOI: https://doi.org/10.3390/nu16244368

Purvis, E. M., O‘Donnell, J. C., Chen, H. I., & Cullen, D. K. (2020). Tissue engineering and biomaterial strategies to elicit endogenous neuronal replacement in the brain. Frontiers in Neurology, 11, 344. DOI: https://doi.org/10.3389/fneur.2020.00344

Qi, L., Wang, F., Sun, X., Li, H., Zhang, K., & Li, J. (2024). Recent advances in tissue repair of the blood-brain barrier after stroke. Journal of Tissue Engineering, 15, 20417314241226551. DOI: https://doi.org/10.1177/20417314241226551

Qin, C., Wang, K., Zhang, L., & Bai, L. (2022). Stem cell therapy for Alzheimer’s disease: An overview of experimental models and reality. Animal Models and Experimental Medicine, 5(1), 15. DOI: https://doi.org/10.1002/ame2.12207

Quezada, A., Ward, C., Bader, E. R., Zolotavin, P., Altun, E., Hong, S., Killian, N. J., Xie, C., Batista-Brito, R., & Hébert, J. M. (2023). An in vivo platform for rebuilding functional neocortical tissue. Bioengineering, 10(2), 263. DOI: https://doi.org/10.3390/bioengineering10020263

Raza, S. S., Popa-Wagner, A., Hussain, Y. S., & Khan, M. A. (2018). Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Research & Therapy, 9(1), 1005. DOI: https://doi.org/10.1186/s13287-018-1005-z

Regmi, S., Liu, D. D., Shen, M., Kevadiya, B. D., Ganguly, A., Primavera, R., Chetty, S., Yarani, R., & Thakor, A. S. (2022). Mesenchymal stromal cells for the treatment of Alzheimer’s disease: Strategies and limitations. Frontiers in Molecular Neuroscience, 15, 1011225. DOI: https://doi.org/10.3389/fnmol.2022.1011225

Reidling, J. C., Relaño-Ginés, A., Holley, S. M., Ochaba, J., Moore, C., Fury, B., Lau, A., Tran, A., Yeung, S. Y., Salamati, D., Zhu, C., Hatami, A., Cepeda, C., Barry, J., Kamdjou, T., King, A. R., Coleal-Bergum, D., Franich, N. R., LaFerla, F. M., … Thompson, L. M. (2017). Human neural stem cell transplantation rescues functional deficits in R6/2 and Q140 Huntington’s disease mice. Stem Cell Reports, 10(1), 58–72. DOI: https://doi.org/10.1016/j.stemcr.2017.11.005

Rhee, Y., Ko, J., Chang, M., Yi, S., Kim, D., Kim, C., Shim, J., Jo, A.-Y., Kim, B., Lee, H., Lee, S., Suh, W., Park, C., H, K., Lee, Y., Lanza, R., Kim, K., & Lee, S. (2011). Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. Journal of Clinical Investigation, 121(6), 2326–2335. DOI: https://doi.org/10.1172/jci45794

Rivera, T., Zhao, Y., Ni, Y., & Wang, J. (2020). Human-induced pluripotent stem cell culture methods under cGMP conditions. Current Protocols in Stem Cell Biology, 54(1), e117. DOI: https://doi.org/10.1002/cpsc.117

Saft, M., Gonzales-Portillo, B., Park, Y. J., Cozene, B., Sadanandan, N., Cho, J., Garbuzova-Davis, S., & Borlongan, C. V. (2020). Stem cell repair of the microvascular damage in stroke. Cells, 9(9), 2075. DOI: https://doi.org/10.3390/cells9092075

Saha, S., Buttari, B., Panieri, E., Profumo, E., & Saso, L. (2020). An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 25(22), 5474. DOI: https://doi.org/10.3390/molecules25225474

Santos, M. A. dos, Moreira, J. A. F., Santos, S. S., & Solá, S. (2025). Sustaining brain youth by neural stem cells: Physiological and therapeutic perspectives. Molecular Neurobiology. DOI: https://doi.org/10.1007/s12035-025-04774-z

Schellino, R., Besusso, D., Parolisi, R., Gómez-González, G. B., Dallere, S., Scaramuzza, L., Ribodino, M., Campus, I., Conforti, P., Parmar, M., Boido, M., Cattaneo, E., & Buffo, A. (2023). hESC-derived striatal progenitors grafted into a Huntington’s disease rat model support long-term functional motor recovery by differentiating, self-organizing and connecting into the lesioned striatum. Stem Cell Research & Therapy, 14(1), 3422. DOI: https://doi.org/10.1186/s13287-023-03422-4

Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z., Hubschman, J., Davis, J. L., Heilwell, G., Spirn, M. J., Maguire, J. I., Gay, R., Bateman, J., Ostrick, R., Morris, D., Vincent, M., Anglade, E., Priore, L. V. D., & Lanza, R. (2014). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. The Lancet, 385(9967), 509–516. DOI: https://doi.org/10.1016/s0140-6736(14)61376-3

Seo, J. H., & Cho, S. (2012). Neurorestoration induced by mesenchymal stem cells: Potential therapeutic mechanisms for clinical trials. Yonsei Medical Journal, 53(6), 1059–1074. DOI: https://doi.org/10.3349/ymj.2012.53.6.1059

Shariati, A., Nemati, R., Sadeghipour, Y., Yaghoubi, Y., Baghbani, R., Javidi, K., Zamani, M., & Hassanzadeh, A. (2020). Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. European Journal of Cell Biology, 99(6), 151097. DOI: https://doi.org/10.1016/j.ejcb.2020.151097

Shen, K., & Cowan, C. W. (2010). Guidance molecules in synapse formation and plasticity. Cold Spring Harbor Perspectives in Biology, 2(4), a001842. DOI: https://doi.org/10.1101/cshperspect.a001842

Shimada, I. S., & Spees, J. L. (2010). Stem and progenitor cells for neurological repair: Minor issues, major hurdles, and exciting opportunities for paracrine-based therapeutics. Journal of Cellular Biochemistry, 112(2), 374–382. DOI: https://doi.org/10.1002/jcb.22963

Smith, J. A., Das, A., Ray, S. K., & Banik, N. L. (2011). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Research Bulletin, 87(1), 10–20. DOI: https://doi.org/10.1016/j.brainresbull.2011.10.004

Sonntag, K., Song, B., Lee, N., Jung, J. H., Cha, Y., Leblanc, P., Neff, C., Kong, S. W., Carter, B. S., Schweitzer, J. S., & Kim, K. (2018). Pluripotent stem cell-based therapy for Parkinson’s disease: Current status and future prospects. Progress in Neurobiology, 168, 1–19. DOI: https://doi.org/10.1016/j.pneurobio.2018.04.005

Strell, P., Johnson, S., Carchi, C., & Low, W. C. (2023). Neuronal transplantation for Alzheimer’s disease and prospects for generating exogenic neurons as a source of cells for implantation. Cell Transplantation, 32, 09636897231164712. DOI: https://doi.org/10.1177/09636897231164712

Subhramanyam, C. S., Wang, C., Hu, Q., & Dheen, S. T. (2019). Microglia-mediated neuroinflammation in neurodegenerative diseases. Seminars in Cell and Developmental Biology, 94, 112–120. DOI: https://doi.org/10.1016/j.semcdb.2019.05.004

Supakul, S., Okano, H., & Maeda, S. (2021). Utilization of human induced pluripotent stem cells-derived in vitro models for the future study of sex differences in Alzheimer’s disease. Frontiers in Aging Neuroscience, 13, 768948. DOI: https://doi.org/10.3389/fnagi.2021.768948

Swingler, M., Donadoni, M., Bellizzi, A., Çakır, S., & Sariyer, I. K. (2023). iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. Journal of NeuroVirology, 29(2), 121–134. DOI: https://doi.org/10.1007/s13365-023-01133-3
Temple, S. (2023). Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell, 30(5), 512–526. DOI: https://doi.org/10.1016/j.stem.2023.03.017

Tornero, D. (2022). Neuronal circuitry reconstruction after stem cell therapy in damaged brain. Neural Regeneration Research, 17(9), 1959–1961. DOI: https://doi.org/10.4103/1673-5374.335145

Trudler, D., Ghatak, S., & Lipton, S. A. (2021). Emerging hiPSC models for drug discovery in neurodegenerative diseases. International Journal of Molecular Sciences, 22(15), 8196. DOI: https://doi.org/10.3390/ijms22158196

Tsai, R. Y. L. (2017). Creating a graft-friendly environment for stem cells in diseased brains. Journal of Clinical Investigation, 128(1), 116–124. DOI: https://doi.org/10.1172/jci98490

Vassal, M., Martins, F., Monteiro, B., Tambaro, S., Martinez-Murillo, R., & Rebelo, S. (2024). Emerging pro-neurogenic therapeutic strategies for neurodegenerative diseases: A review of pre-clinical and clinical research. Molecular Neurobiology. DOI: https://doi.org/10.1007/s12035-024-04246-w

Volarević, V., Marković, B. S., Gazdic, M., Volarevic, A., Jovičić, N., Arsenijević, N., Armstrong, L., Djonov, V., Lako, M., & Stojković, M. (2017). Ethical and safety issues of stem cell-based therapy. International Journal of Medical Sciences, 15(1), 36–45. DOI: https://doi.org/10.7150/ijms.21666

Wang, F., Sun, Z., Peng, D., Gianchandani, S., Le, W., Boltze, J., & Li, S. (2023). Cell-therapy for Parkinson’s disease: A systematic review and meta-analysis. Journal of Translational Medicine, 21(1), 4484. DOI: https://doi.org/10.1186/s12967-023-04484-x

Wareham, L. K., Liddelow, S. A., Temple, S., Benowitz, L. I., Polo, A. D., Wellington, C. L., Goldberg, J. L., He, Z., Duan, X., Bu, G., Davis, A. A., Shekhar, K., Torre, A. L., Chan, D. C., Soler, M., Flanagan, J. G., Subramanian, P., Rossi, S. L., Brunner, T., … Calkins, D. J. (2022). Solving neurodegeneration: Common mechanisms and strategies for new treatments. Molecular Neurodegeneration, 17(1), 24. DOI: https://doi.org/10.1186/s13024-022-00524-0

Watanabe, C., Imaizumi, T., Kawai, H., Suda, K., Honma, Y., Ichihashi, M., Ema, M., & Mizutani, K. (2020). Aging of the vascular system and neural diseases. Frontiers in Aging Neuroscience, 12, 557384. DOI: https://doi.org/10.3389/fnagi.2020.557384

Williamson, M. R., Franzen, R. L., Fuertes, C. J. A., Dunn, A. K., Drew, M. R., & Jones, T. A. (2020). A window of vascular plasticity coupled to behavioral recovery after stroke. Journal of Neuroscience, 40(40), 7651–7664. DOI: https://doi.org/10.1523/jneurosci.1464-20.2020

Wilson, C. M., Belkozhayev, A. M., Al-Yozbaki, M., George, A., Niyazova, R. Y., Sharipov, K., & Byrne, L. J. (2021). Extracellular vesicles, stem cells and the role of miRNAs in neurodegeneration. Current Neuropharmacology, 20(8), 1450–1466. DOI: https://doi.org/10.2174/1570159x19666210817150141

Wislet-Gendebien, S., Hans, G., Leprince, P., Rigo, J., Moonen, G., & Rogister, B. (2005). Plasticity of cultured mesenchymal stem cells: Switch from nestin-positive to excitable neuron-like phenotype. Stem Cells, 23(3), 392–402. DOI: https://doi.org/10.1634/stemcells.2004-0149

Wu, C., Lien, C., Hou, W., Chiang, P., & Tsai, K. (2016). Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Scientific Reports, 6, 27358. DOI: https://doi.org/10.1038/srep27358

Xiong, M., Tao, Y., Gao, Q., Feng, B., Yan, W., Zhou, Y., Kotsonis, T. A., Yuan, T., You, Z., Wu, Z., Xi, J., Haberman, A., Graham, J., Block, J., Zhou, W., Chen, Y., & Zhang, S. (2020). Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell, 28(1), 112–126. DOI: https://doi.org/10.1016/j.stem.2020.08.014

Xiong, Y., Song, J., Huang, X., Pan, Z., Goldbrunner, R., Stavrinou, L. C., Lin, S., Hu, W., Zheng, F., & Stavrinou, P. (2022). Exosomes derived from mesenchymal stem cells: Novel effects in the treatment of ischemic stroke. Frontiers in Neuroscience, 16, 899887. DOI: https://doi.org/10.3389/fnins.2022.899887

Xu, X., Shen, D., Gao, Y., Zhou, Q., Ni, Y., Meng, H., Shi, H., Le, W., & Chen, S. (2021). A perspective on therapies for amyotrophic lateral sclerosis: Can disease progression be curbed? Translational Neurodegeneration, 10(1), 50. DOI: https://doi.org/10.1186/s40035-021-00250-5

Yamaguchi, M., & Mori, K. (2005). Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Proceedings of the National Academy of Sciences, 102(27), 9697–9702. DOI: https://doi.org/10.1073/pnas.0406082102

Yang, F., Cho, S., Son, S. M., Bogatyrev, S. R., Singh, D., Green, J. J., Mei, Y., Park, S., Bhang, S. H., Kim, B., Langer, R., & Anderson, D. G. (2009). Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanop s. Proceedings of the National Academy of Sciences, 107(8), 3317–3322. DOI: https://doi.org/10.1073/pnas.0905432106

Yoon, Y., Kim, H. S., Hong, C. P., Li, E., Jeon, I., Park, H. J., Lee, N., Pei, Z., & Song, J. (2020). Neural transplants from human induced pluripotent stem cells rescue the pathology and behavioral defects in a rodent model of Huntington’s disease. Frontiers in Neuroscience, 14, 558204. DOI: https://doi.org/10.3389/fnins.2020.558204

Yuasa-Kawada, J., Kinoshita-Kawada, M., Tsuboi, Y., & Wu, J. Y. (2022). Neuronal guidance genes in health and diseases. Protein & Cell. DOI: https://doi.org/10.1093/procel/pwac030

Yue, C., Feng, S., Chen, Y., & Jing, N. (2022). The therapeutic prospects and challenges of human neural stem cells for the treatment of Alzheimer’s disease. Cell Regeneration, 11(1), 28. DOI: https://doi.org/10.1186/s13619-022-00128-5

Zalfa, C., Nodari, L. R., Vacchi, E., Gelati, M., Profico, D. C., Boido, M., Binda, E., Filippis, L. D., Copetti, M., Garlatti, V., Daniele, P., Rosati, J., Luca, A. D., Pinos, F., Cajola, L., Visioli, A., Mazzini, L., Vercelli, A., Svelto, M., … Ferrari, D. (2019). Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death and Disease, 10(5), 358. DOI: https://doi.org/10.1038/s41419-019-1582-5

Zeng, X., & Qin, H. (2022). Stem cell transplantation for Parkinson’s disease: Current challenges and perspectives. Aging and Disease, 13(6), 1652–1667. DOI: https://doi.org/10.14336/ad.2022.0312

Zhang, L., Chen, Z., Lu, P., Liu, B., & Li, M. (2021). Motor neuron replacement therapy for amyotrophic lateral sclerosis. Neural Regeneration Research, 17(8), 1633–1642. DOI: https://doi.org/10.4103/1673-5374.332123

Zhang, L., Wang, Y., Liu, T., Mao, Y., & Peng, B. (2023). Novel microglia-based therapeutic approaches to neurodegenerative disorders. Neuroscience Bulletin, 39(3), 491–510. DOI: https://doi.org/10.1007/s12264-022-01013-6

Zhao, X., Li, Q., Guo, Z., & Li, Z. (2021). Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Research & Therapy, 12(1), 650. DOI: https://doi.org/10.1186/s13287-021-02650-w

Zhou, W., Wang, X., Dong, Y., Gao, P., Zhao, X., Wang, M., Wu, X., Shen, J., Zhang, X., Lü, Z., & An, W. (2024). Stem cell-derived extracellular vesicles in the therapeutic intervention of Alzheimer’s disease, Parkinson’s disease, and stroke. Theranostics, 14(8), 3358–3380. DOI: https://doi.org/10.7150/thno.95953
How to Cite
Kolins, G., & Sacconi, A. M. (2025). Sources and Mechanisms of Cell-Based Therapeutic Strategies for Neurodegenerative Diseases. Science Insights, 47(4), 2005–2020. https://doi.org/10.15354/si.25.re1222
Section
Review